
Microservices
Monitoring and Logging

Navigate : Space / Arrow Keys | - Menu | - Fullscreen | - Overview | - Blackout | - Speaker | - HelpM F O B S ?



1 / 26

Microservices 2019



2 / 26

Content
Monitoring

Classical vs. "the new shit"
Active monitoring
Passive monitoring
Application metrics
Caveats in Microservice applications

Logging

Microservices 2019



3 / 26

Monitoring
Monitoring has 2 objectives

Detect errors as soon as possible
Avoid occuring errors (that's even better!)

You've to distinguish between classical monitoring systems (targeting "classical"
infrastructure like physical and virtual servers) ant the "new shit"
Depending on your environment you might need both
Classical systems:

Nagios/Icinga
Zabbix
PandoraFMS

"New shit":
Prometheus & Grafana
Graphite & Grafana
ELK/EFK

Microservices 2019



4 / 26

Monitoring principles
Almost all classical systems are supporting polling of metrics
A few of them also support pushing of metrics e.g. with a local agent on every
server
Both have advantages and disadvantages (discussed later on)
None of them is a perfect solution. You'll want to achieve a "hybrid" solution by
combining both principles to get all the information you need to determine if your
system is healthy

Microservices 2019



5 / 26

Active Monitoring
Active monitoring (polling) has an extrinsic view of the system to monitoring (good
for availability and service integrity checks e.g. is the DNS server or web server
running correctly)
It can detect if a server or a service is available and is behaving correctly
It can't monitor resources like CPU usage, RAM usage, disk usage, disk I/O and so
on (actually a few active systems do this by connecting via WMI or SSH but that’s
more a hybrid solution)
Active monitoring is agentless so you don’t have to deploy and configure any
additional component to your servers

Microservices 2019



6 / 26

Passive Monitoring
Passive monitoring (pushing) has an intrinsic view of the system to be monitored
It can detect if the actual service (in terms of systemd or Windows services) is
running (e.g. Nginx, bind, IIS,…)
It can detect if the service is behaving correctly
It is able to monitor CPU usage, RAM usage, disk usage, disk I/O…
Passive monitoring requires a component on every system you want to observe
If the whole server fails the central system has to recognize that the system was
lost (kind of active monitoring if you like)

Microservices 2019



7 / 26

Application metrics
Beside the classical monitoring metrics mentioned earlier we are required to
collect metrics of our application/services
These metrics might include:

Success/error response rate
Response time statistics (max, min, median, average)
memory usage
CPU times
Message bus throughput
...

Nor active neither passive monitoring is by default able to collect these metrics,
you have to implement custom endpoints to serve these metrics, custom
middleware to collect these metrics, ...
In addition you might want to add domain specific metrics (e.g. how often is a
user viewing his profile page, how long does it take to execute a search and so on)
as this can help you to decide which features are more important than others and
which features are never used

Microservices 2019



8 / 26

Microservices 2019



9 / 26

Caveats in Microservice applications
Equivalent to load balancers (see chapter 4) systems have to picked up by the
monitoring when they’re started
Depending on the scale of your application the monitoring system has to keep
track of many more systems
To get a high perspective, your system has to aggregate the collected information
to determine if a service is healthy (in term of a component of your application
architecture) as it might not matter if a single instance has a high load or is
unavailable for a moment if there are other instances to keep your application up
and running
To be able to analyze a certain error it’s also necessary to be able to go down the
rabbit hole and inspect a single node
As you might have many servers and services the amount of collected could be
huge. Your system has to be able to handle this amount of data or aggregate it to
meaningful snapshots

Microservices 2019



10 / 26

Microservices 2019



11 / 26

Valuation - hints
To decide if the current value of a metric is good, bad or just okay you have to
have data to compare it to
Single datapoints might not be representative. It might be a better choice to
trigger an alert only after several values.

Microservices 2019



12 / 26

Synthetic Monitoring
Synthetic monitoring is about is the system working
The advantage of synthetic monitoring is that it tests the whole system at once by
executing regular tasks a regular users also executes
This sounds a lot like behavior driven development and E2E tests, doesn’t it?
Well, if it sounds like a duck, and smells like a duck and behaves like a duck…it is a
duck! Actually you could re-use (more or less) your already existing E2E tests (you
implemented E2E tests, right?) for synthetic monitoring!
When it comes to implementing synthetic monitoring and you want to re-use your
E2E tests you have to pay attention that you don’t trigger any side-effects by
manipulating real user accounts, orders or anything else.
To avoid these side effects you could have test accounts, data, … in your
production environment. This way you also have a discrete set of data you know
when you implement the tests. This is also helpful when it comes to response
validation.

Microservices 2019



13 / 26

Logging

Microservices 2019



14 / 26

Microservices 2019



15 / 26

Correlation IDs
From the moment when you have more than one service in your microservice
application it might be the case that an interaction of a user might result in a
cascade of events in multiple services (even if you avoided direct coupling)
When it comes to an error and you have to analyze how this error occurred you
have to dig through your logs and trace the request from the beginning to the
error site (think of a distributed stack trace)
If you don’t have any indicator which entries belong to the initial request you have
to analyze all logs of a certain timespan and guess which entries are belonging
together

Microservices 2019



16 / 26

Microservices 2019



17 / 26

Microservices 2019



18 / 26

Correlation IDs - conclusion
A correlation id helps to aggregate logs belonging together
Whenever a service triggers an action of another service (directly or indirectly e.g.
by enqueuing a message to a bus) it has to include the correlation id
Tools like are providing plugins or mechanisms to add correlation ids
To avoid that a team mate forgets to include the correlation id it might be a good
idea to handle the inclusion in a middleware component, a custom HTTP client
wrapper, a custom event bus wrapper,…
Tools like help to trace requests in distributed systems (but with extra
costs!)

Kong

ZipKin

Microservices 2019



19 / 26

https://konghq.com/kong/
https://zipkin.io/

Logging formats
NGinx logs
Apache2 logs
MySQL server logs
JSON

GELF
FluentD

Microservices 2019



20 / 26

NGinx logs
192.168.96.2 - - [02/Oct/2018�09�58�04 +0200] "GET / HTTP/1.1" 200 612 "-" "Mozilla/5.0
192.168.96.2 - - [02/Oct/2018�09�58�05 +0200] "GET /favicon.ico HTTP/1.1" 404 162 "-" "
192.168.96.2 - - [02/Oct/2018�09�58�05 +0200] "GET /favicon.ico HTTP/1.1" 404 162 "-" "
192.168.97.4 - - [02/Nov/2018�10�59�32 +0100] "GET / HTTP/1.1" 200 612 "-" "Mozilla/5.0
192.168.97.4 - - [02/Nov/2018�10�59�32 +0100] "GET /nice%20ports%2C/Tri%6Eity.txt%2ebak
192.168.97.4 - - [02/Nov/2018�10�59�33 +0100] "GET / HTTP/1.0" 200 612 "-" "-" "-"

Microservices 2019



21 / 26

Apache2 logs
127.0.0.1 - - [05/Feb/2012�17�11�55 +0000] "GET / HTTP/1.1" 200 140 "-" "Mozilla/5.0 (W

Microservices 2019



22 / 26

MySQL server logs
2018-05-25T01�54�33.376807Z 0 [Warning] TIMESTAMP with implicit DEFAULT value is deprec
2018-05-25T01�54:33.378175Z 0 [Note] /usr/sbin/mysqld (mysqld 5.7.22) starting as proce
2018-05-25T01�54:33.380657Z 0 [Note] InnoDB: PUNCH HOLE support available
2018-05-25T01�54:33.380687Z 0 [Note] InnoDB: Mutexes and rw_locks use GCC atomic builti
2018-05-25T01�54:33.380692Z 0 [Note] InnoDB: Uses event mutexes
2018-05-25T01�54:33.380695Z 0 [Note] InnoDB: GCC builtin ��atomic_thread_fence() is use
2018-05-25T01�54:33.380697Z 0 [Note] InnoDB: Compressed tables use zlib 1.2.3
2018-05-25T01�54:33.380701Z 0 [Note] InnoDB: Using Linux native AIO
2018-05-25T01�54:33.380911Z 0 [Note] InnoDB: Number of pools: 1
2018-05-25T01�54:33.380997Z 0 [Note] InnoDB: Using CPU crc32 instructions
2018-05-25T01�54:33.382234Z 0 [Note] InnoDB: Initializing buffer pool, total size = 128
2018-05-25T01�54:33.388204Z 0 [Note] InnoDB: Completed initialization of buffer pool
2018-05-25T01�54:33.389840Z 0 [Note] InnoDB: If the mysqld execution user is authorized
2018-05-25T01�54:33.399911Z 0 [ERROR] InnoDB: The innodb_system data file 'ibdata1' mus
2018-05-25T01�54:33.399937Z 0 [ERROR] InnoDB: The innodb_system data file 'ibdata1' mus
2018-05-25T01�54:33.399944Z 0 [ERROR] InnoDB: Plugin initialization aborted with error
2018-05-25T01�54:34.000567Z 0 [ERROR] Plugin 'InnoDB' init function returned error.
2018-05-25T01�54:34.000617Z 0 [ERROR] Plugin 'InnoDB' registration as a STORAGE ENGINE
2018-05-25T01�54:34.000627Z 0 [ERROR] Failed to initialize builtin plugins.

Microservices 2019



23 / 26

Graylog Extended Log Format - GELF
{
 "version": "1.1",
 "host": "example.org",
 "short_message": "A short message that helps you identify what is going on",
 "full_message": "Backtrace here\n\nmore stuff",
 "timestamp": 1385053862.3072,
 "level": 1,
 "_user_id": 9001,
 "_some_info": "foo",
 "_some_env_var": "bar"
}

Microservices 2019



24 / 26

GELF - background

Graylog supports receiving log messages via TCP and UDP
Developed to avoid problems with classic Syslog format (limited length, no
compression, too many different dialects)
GELF spec

Microservices 2019



25 / 26

http://docs.graylog.org/en/2.5/pages/gelf.html

FluentD

The only mandatory parameter in FluentD is time to order the
gathered logs in a timely manor.

{
 "time": 1362020400,
 "host": "192.168.0.1",
 "size": 777,
 "method": "PUT"
}

Microservices 2019



26 / 26

