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People try to copy Netflix, but 
they can only copy what they 
see. They copy the results, not 
the process. 
— Adrian Cockcroft, former Chief Cloud Architect, Netflix
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Data is the hardest part in microservices

— CRUD (Create, Read, Update, Delete) is often not enough for 
microservices

— You cannot do ACID (atomicity, consistency, isolation, 
durability) over multiple datasources transactions

— Better use BASE (Basically Available, Soft state, Eventual 
consistency) 

— Choose the best for each service
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CAP
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Shared Datebase (Anti-Pattern)

— While microservices appear 
independent, transitive dependencies 
in the data tier all but eliminate their 
autonomy.

Updates --> Locks --> Contention! --> 
BLOCK!!!
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Data API

— Microservices do not acces data layer 
directly

— Expect for the microservice that 
implement the data API

— A Surface area to Implement access 
control, implementing throttling, 
perform logging and other policies

— Possibly coupled with Parallel 
deployment 
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Bounded Context (Focus on 
Domain, not Data)

— Domain-Driven-Design
— Each bounded context has a single, 

unified model
— Relationships between models are 

explicitly defined
— A product team usually has a strong 

correlation to a bounded context
— Ideal pattern for Data APIs – do not 

fail into the trap of simply projecting 
current data models

— Model transactional boundaries as 
aggregates
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Database per Service and Client 
Side Joins

— Support polyglot persistence
— Independent availability, backup/

restore, access patterns, etc.
— Services must be loosely coupled so 

that they can be developed, deployed 
and scaled independently

— Microservices often need a Cache 
and/or materialized Views
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Message Broker
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Asynchronous Messaging

— Service must handle requests from the applications clients. 
Furthermore, services must sometime collaborate to handle 
those requests. They must use an inter-process 
communication protocol.

— Use asynchronous messaging for inter-service 
communication. Services communcating by exchanging 
messages over messaging channels.

— There are numerous of asynchronous messaging technologies 
(e.g. Apache Kafka, RabbitMQ)
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Benefits

— Loose coupling since it decouples client from services
— Improved availability since the message broker buffers 

messages until the consumer is able to process them
— Supports a variety of communication patterns including 

request/reply, notifications, request/async response, publish/
subscribe, publish/async response etc
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Example: Kafka

- Distributed, partitioned, replicated commit log service
- Pub/Sub messaging functionality
- Created by LinkedIn, now an Apache open-source project
- Fast
    - But helps with Back-Pressure (Fast Producer, Slow Consumer Problem)
- Resilient
    - Brokers persist data to disk
    - Broker Partitions are replicated to other nodes
    - Consumers start where they left off
    - Producers can retry at-least-once messaging
- Scalable
    - Capacity can be added at runtime wihout downtime
    - Topics can be larger than any single node could hold
    - Additional partitions can be added to add more parallelism
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Caching
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Caching Requirements

— Distributed 
— Over various failure boundaries AZ / Data Centers

— Data replication
— Tunable consistency

— Available
— Multi-node
— Recovery process protects against any data loss

— Scalable
— In-memory performance
— Horizontally scalable

— Ease of Provisioning
Microservices 2018 15



Caching (Look Aside)

— Attempt retrieval from cache
— Client retrieves from source
— Write into cache
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Caching (Read-through)

— Attempt retrieval from cache
— Cache retrieves from source and 

stores in cache
— Return value to client
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Caching (Write-through)

— Write to cache
— Cache writes to source
— Ack sent to client
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Caching (Write-behind)

— Write to cache
— Ack sent to client
— Cache writes to source 

asynchronously
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Two Generals Problem 1
The point where CRUD is not enough

1 Taken from https://www.youtube.com/watch?v=holjbuSbv3k
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The Case: Holiday Rentrals

— AirBnb like application
— Asynchronous microservice 

architecture
— Kafka for messaging
— Reservation service uses CRUD 

persistence
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Naive Approach

Update database and publish to Kafka

What if:

— The service goes down?
— The database goes down?
— Kafka goes down?
— The network goes down?
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Another Solution?

We have just moved the problem. Now 
the search service thinks there is a 
reserveration, even when the 
reserveration wasn't complete.
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Two Generals Problem

The problem we have seen can be 
generalized as the 2 generals problem.

— The 2 generals want to attack the city, 
but they can only win if they attack at 
the same time.

— They can just communicate by 
sending messages around the city, 
but there a city patrols around the 
city, which can intercept these 
messages. 

— They need infinite acknowledgements

This problem is prooven to be 
unsolveable!
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We need a different plan to attack!

— We can't solve the 2 generals problem 
— In different databases the application cannot simply use a 

local ACID transaction
— But we can come up with a different attack plan (BASE)

Microservices 2018 26



Event Sourcing

— Don't store the current state
— Store the events that occurred
— Compute the state from the events
— Avoid large numbers of events by 

saving snapshots

Main Benefits:
- Scalable, append only, fits distributed 
k/v stores, low-latency writes, allows 
asynchronous processing
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Command Query Responsibility 
Segregation (CQRS)

Split the application into two parts: the 
command-side and the query-side. The 
command-side handles create, update, 
and delete requests and emits events 
when data changes. The query-side 
handles queries by executing them 
against one or more materialized views 
that are kept up to date by subscribing 
to the stream of events emitted when 
data changes.
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Event Sourcing and CQRS

— Your readside can be materialised 
Views in a RDBMS

— Or in a k/v store / cache 
— Or in memory
— Or ...

Views are optimised for specific query 
use cases. Multiple Views from same 
events. They are updated 
asynchronously and can be rebuilt from 
Events.

Event Log is our Source of Truth
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SAGA instead of 2 Phase 
Commit

Implement each business transaction 
that spans multiple services as a saga. A 
saga is a sequence of local transactions. 
Each local transaction updates the 
database and publishes a message or 
event to trigger the next local 
transaction in the saga. If a local 
transaction fails because it violates a 
business rule then the saga executes a 
series of compensating transactions 
that undo the changes that were made 
by the preceding local transactions.
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How do we get our Domain 
Events? With Event Storming!

— Part of Domain Driven Design
— It is highly analog
— Steps:

— Create domain events
— add commands that caused the 

event
— add an actor / user that executes 

the command
— add corresponding aggregates
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Interesting Videos and Sources

— Event Sourcing and Clustering: https://www.youtube.com/
watch?v=2wSYcyWCtx4

— Two generals Problem: https://www.youtube.com/watch?
v=holjbuSbv3k 

— The hardest part of microservices is your data: https://
www.youtube.com/watch?v=MrV0DqTqpFU
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