
Microservices
Persistence

Microservices 2018 1

Content

1. Overview and Patterns
2. Message-Broker
3. Caching
4. Event Sourcing / CQRS / Saga / Event Storming

Microservices 2018 2

People try to copy Netflix, but
they can only copy what they
see. They copy the results, not
the process.
— Adrian Cockcroft, former Chief Cloud Architect, Netflix

Microservices 2018 3

Data is the hardest part in microservices

— CRUD (Create, Read, Update, Delete) is often not enough for
microservices

— You cannot do ACID (atomicity, consistency, isolation,
durability) over multiple datasources transactions

— Better use BASE (Basically Available, Soft state, Eventual
consistency)

— Choose the best for each service

Microservices 2018 4

CAP

Microservices 2018 5

Shared Datebase (Anti-Pattern)

— While microservices appear
independent, transitive dependencies
in the data tier all but eliminate their
autonomy.

Updates --> Locks --> Contention! -->
BLOCK!!!

Microservices 2018 6

Data API

— Microservices do not acces data layer
directly

— Expect for the microservice that
implement the data API

— A Surface area to Implement access
control, implementing throttling,
perform logging and other policies

— Possibly coupled with Parallel
deployment

Microservices 2018 7

Bounded Context (Focus on
Domain, not Data)

— Domain-Driven-Design
— Each bounded context has a single,

unified model
— Relationships between models are

explicitly defined
— A product team usually has a strong

correlation to a bounded context
— Ideal pattern for Data APIs – do not

fail into the trap of simply projecting
current data models

— Model transactional boundaries as
aggregates

Microservices 2018 8

Database per Service and Client
Side Joins

— Support polyglot persistence
— Independent availability, backup/

restore, access patterns, etc.
— Services must be loosely coupled so

that they can be developed, deployed
and scaled independently

— Microservices often need a Cache
and/or materialized Views

Microservices 2018 9

Message Broker

Microservices 2018 10

Asynchronous Messaging

— Service must handle requests from the applications clients.
Furthermore, services must sometime collaborate to handle
those requests. They must use an inter-process
communication protocol.

— Use asynchronous messaging for inter-service
communication. Services communcating by exchanging
messages over messaging channels.

— There are numerous of asynchronous messaging technologies
(e.g. Apache Kafka, RabbitMQ)

Microservices 2018 11

Benefits

— Loose coupling since it decouples client from services
— Improved availability since the message broker buffers

messages until the consumer is able to process them
— Supports a variety of communication patterns including

request/reply, notifications, request/async response, publish/
subscribe, publish/async response etc

Microservices 2018 12

Example: Kafka

- Distributed, partitioned, replicated commit log service
- Pub/Sub messaging functionality
- Created by LinkedIn, now an Apache open-source project
- Fast
 - But helps with Back-Pressure (Fast Producer, Slow Consumer Problem)
- Resilient
 - Brokers persist data to disk
 - Broker Partitions are replicated to other nodes
 - Consumers start where they left off
 - Producers can retry at-least-once messaging
- Scalable
 - Capacity can be added at runtime wihout downtime
 - Topics can be larger than any single node could hold
 - Additional partitions can be added to add more parallelism

Microservices 2018 13

Caching
Microservices 2018 14

Caching Requirements

— Distributed
— Over various failure boundaries AZ / Data Centers

— Data replication
— Tunable consistency

— Available
— Multi-node
— Recovery process protects against any data loss

— Scalable
— In-memory performance
— Horizontally scalable

— Ease of Provisioning
Microservices 2018 15

Caching (Look Aside)

— Attempt retrieval from cache
— Client retrieves from source
— Write into cache

Microservices 2018 16

Caching (Read-through)

— Attempt retrieval from cache
— Cache retrieves from source and

stores in cache
— Return value to client

Microservices 2018 17

Caching (Write-through)

— Write to cache
— Cache writes to source
— Ack sent to client

Microservices 2018 18

Caching (Write-behind)

— Write to cache
— Ack sent to client
— Cache writes to source

asynchronously

Microservices 2018 19

Two Generals Problem 1
The point where CRUD is not enough

1 Taken from https://www.youtube.com/watch?v=holjbuSbv3k

Microservices 2018 20

The Case: Holiday Rentrals

— AirBnb like application
— Asynchronous microservice

architecture
— Kafka for messaging
— Reservation service uses CRUD

persistence

Microservices 2018 21

Naive Approach

Update database and publish to Kafka

What if:

— The service goes down?
— The database goes down?
— Kafka goes down?
— The network goes down?

Microservices 2018 22

Microservices 2018 23

Another Solution?

We have just moved the problem. Now
the search service thinks there is a
reserveration, even when the
reserveration wasn't complete.

Microservices 2018 24

Two Generals Problem

The problem we have seen can be
generalized as the 2 generals problem.

— The 2 generals want to attack the city,
but they can only win if they attack at
the same time.

— They can just communicate by
sending messages around the city,
but there a city patrols around the
city, which can intercept these
messages.

— They need infinite acknowledgements

This problem is prooven to be
unsolveable!
Microservices 2018 25

We need a different plan to attack!

— We can't solve the 2 generals problem
— In different databases the application cannot simply use a

local ACID transaction
— But we can come up with a different attack plan (BASE)

Microservices 2018 26

Event Sourcing

— Don't store the current state
— Store the events that occurred
— Compute the state from the events
— Avoid large numbers of events by

saving snapshots

Main Benefits:
- Scalable, append only, fits distributed
k/v stores, low-latency writes, allows
asynchronous processing

Microservices 2018 27

Command Query Responsibility
Segregation (CQRS)

Split the application into two parts: the
command-side and the query-side. The
command-side handles create, update,
and delete requests and emits events
when data changes. The query-side
handles queries by executing them
against one or more materialized views
that are kept up to date by subscribing
to the stream of events emitted when
data changes.

Microservices 2018 28

Event Sourcing and CQRS

— Your readside can be materialised
Views in a RDBMS

— Or in a k/v store / cache
— Or in memory
— Or ...

Views are optimised for specific query
use cases. Multiple Views from same
events. They are updated
asynchronously and can be rebuilt from
Events.

Event Log is our Source of Truth

Microservices 2018 29

SAGA instead of 2 Phase
Commit

Implement each business transaction
that spans multiple services as a saga. A
saga is a sequence of local transactions.
Each local transaction updates the
database and publishes a message or
event to trigger the next local
transaction in the saga. If a local
transaction fails because it violates a
business rule then the saga executes a
series of compensating transactions
that undo the changes that were made
by the preceding local transactions.

Microservices 2018 30

How do we get our Domain
Events? With Event Storming!

— Part of Domain Driven Design
— It is highly analog
— Steps:

— Create domain events
— add commands that caused the

event
— add an actor / user that executes

the command
— add corresponding aggregates

Microservices 2018 31

Interesting Videos and Sources

— Event Sourcing and Clustering: https://www.youtube.com/
watch?v=2wSYcyWCtx4

— Two generals Problem: https://www.youtube.com/watch?
v=holjbuSbv3k

— The hardest part of microservices is your data: https://
www.youtube.com/watch?v=MrV0DqTqpFU

Microservices 2018 32

