Mlcroserwces

eeeeeeeee

1. Overview and Patterns

2. Message-Broker

3. Caching

4. Event Sourcing / CQRS / Saga / Event Storming

People try to copy Netflix, but
they can only copy what they
see. They copy the results, not
the process.

— Adrian Cockcroft, former Chief Cloud Architect, Netflix

— CRUD (Create, Read, Update, Delete) is often not enough for
microservices

— You cannot do ACID (atomicity, consistency, isolation,
durability) over multiple datasources transactions

— Better use BASE (Basically Available, Soft state, Eventual
consistency)

— Choose the best for each service

Data Models A
Relational (Comparison) vailability
Key-value

Column-oriented/ Tabular
Document oriented

Each client can always read and write

CA AP
RDBMSs Aster Data Dynamo Cassandra
(MySQL, Greenplum Voldemort SimpleDB
Postgres, Vertica Tokyo Cabinet CouchDB

etc) KAI Riak
Partltion
onsistency cP Tolerance
All clients always BigTable MongoDB Berkeley DB The system works well

have the same view Hypertable Terrastore MemcacheDB despite physical network
of the data HBase Scalars Redis partitions

Microservices 2018

— While microservices appear
iIndependent, transitive dependencies
In the data tier all but eliminate their
autonomy.

Updates --> Locks --> Contention! -->
BLOCKI!!

— Microservices do not acces data layer
directly

— Expect for the microservice that
iImplement the data API

— A Surface area to Implement access
control, implementing throttling,
perform logging and other policies

— Possibly coupled with Parallel
deployment

Vi

— Domain-Driven-Design

— Each bounded context has a single,
unified model

— Relationships between models are
explicitly defined

— A product team usually has a strong
correlation to a bounded context

— ldeal pattern for Data APIls — do not
fail into the trap of simply projecting
current data models

— Model transactional boundaries as
aggregates

Database per Service and Client

Side Joins

— Support polyglot persistence /\'0”"\0\11%"'10” :

— Independent availability, backup/ + merd
restore, access patterns, etc.

— Services must be loosely coupled so S&L/

that they can be developed, deployed
and scaled independently

|v~um
® eF+ OM{Z(.
o'n
— Microservices often need a Cache J

and/or materialized Views pun ket

n frem on fu“ o wter

Ue

Message Broker

— Service must handle requests from the applications clients.
Furthermore, services must sometime collaborate to handle
those requests. They must use an inter-process
communication protocol.

— Use asynchronous messaging for inter-service
communication. Services communcating by exchanging
messages over messaging channels.

— There are numerous of asynchronous messaging technologies
(e.g. Apache Kafka, RabbitMQ)

— Loose coupling since it decouples client from services

— Improved availability since the message broker buffers
messages until the consumer is able to process them

— Supports a variety of communication patterns including
request/reply, notifications, request/async response, publish/
subscribe, publish/async response etc

Distributed, partitioned, replicated commit log service
Pub/Sub messaging functionality
Created by LinkedIn, now an Apache open-source project
Fast

- But helps with Back-Pressure (Fast Producer, Slow Consumer Problem)
Resilient

- Brokers persist data to disk

- Broker Partitions are replicated to other nodes

- Consumers start where they left off

- Producers can retry at-least-once messaging
Scalable

- Capacity can be added at runtime wihout downtime

- Topics can be larger than any single node could hold

- Additional partitions can be added to add more parallelism

— Distributed

— Over various failure boundaries AZ / Data Centers
— Data replication

— Tunable consistency
— Avalilable

— Multi-node

— Recovery process protects against any data loss
— Scalable

— In-memory performance

— Horizontally scalable
— Ease of Provisioning

— Attempt retrieval from cache 2
— Client retrieves from source
— Write into cache 17?

— Attempt retrieval from cache
. 17?
— Cache retrieves from source and 2
stores in cache <
— Return value to client

— Write to cache 1
— Cache writes to source
— Ack sent to client

— Write to cache 1

— Ack sent to client . 3

— Cache writes to source
asynchronously

-~

3

IL'Wot. ety
ity
Ll

TR IL AT Ta

-

ST
. “” '” "““0" ¥

et

ekphti:

*

Y 'u‘lo.w
r..

.o.no

The point where CRU

it

L
T

TR

T
Trtaieeeieey

i
‘.

20

TerLTLrb TR Tht,

TSLsiay
ﬂt.a ﬂo)x.
.ma..w.u.c.wwu..

X

!
!

L
3

et

oy
da'ﬂ .N l.” ﬂp .t oﬂ&!ﬂ k1
R Ry
B RERRR
SRR
. . 1)
LR
ey
e
LA LR LS T T TR T
I T
TLoiatiis Jm.x
Ty

-

TTa

AT

SETILY

LITEYLTEY TaYE
X n.%%&wﬁ.ﬁ.? .
ﬂbn ro
L} " Lo -
SR

.Otuﬂbvho AL

ThisLats

FIRRIRTIY
et
T'Wuohx.m"a

A TAL tAReE

A

24

-

T
T !
; “.ww...mnhn.m.

' Taken from

o
S

Microservices 2018 ’

“mw.n..mwu

T
T
i

-

-

3

-
-

by

-

— AiIrBnb like application

— Asynchronous microservice
architecture

— Kafka for messaging

— Reservation service uses CRUD
persistence

--

1 ReservationAdded

Reservation Service

\

.

]

RDBMS

Search Service

v

s

ElasticSearch

Update database and publish to Kafka

— The service goes down?
— The database goes down?
— Kafka goes down?

— The network goes down?

Service

Database

T
L

begin tx

 J

update

Y

commit

 J

Kafka

publish

Microservices 2018

Ah, here we are, a nice log cabin in the

Let me see... woods, not too far from
the town, fantastic
views, and 1t's
free this summer!

You want to search for a
place to rent this summer?

- e el

No! 1t's not free this
summer, I've taken a
reservation for 1t!

This is what happens when
you have two dependent
write operations,

o but you

#"‘S -~ don't do

AN them

' atomically.

Why didn't you I tried, but
tell me? Kafka was down!

Ly~
5

23

We have just moved the problem. Now
the search service thinks there is a

Kafka

reserveration, even when the SL &
reserveration wasn't complete. 1 1
begin tx -
update >
m publish
Ly commt -
i

Two Generals Problem

The problem we have seen can be
generalized as the 2 generals problem.

— The 2 generals want to attack the city,
but they can only win if they attack at
the same time.

— They can just communicate by
sending messages around the city,
but there a city patrols around the
city, which can intercept these
messages.

— They need infinite acknowledgements

This problem is prooven to be
unsolveable!

Microservices 2018

25

— We can't solve the 2 generals problem

— In different databases the application cannot simply use a
local ACID transaction

— But we can come up with a different attack plan (BASE)

— Don't store the current state

— Store the events that occurred

— Compute the state from the events

— Avoid large nhumbers of events by
saving snapshots

Main Benefits:
- Scalable, append only, fits distributed

k/v stores, low-latency writes, allows
asynchronous processing

Cm
Cmd = Evt
Proc | I Proc

Event

Event

s Event Event
Think a Little, Log
j Write,

| Think later

S'rate

Split the application into two parts: the
command-side and the query-side. The i
command-side handles create, update, T GET /customers/id - GET /orders?text=xyz GET ...
and delete requests and emits events
when data changes. The query-side
handles queries by executing them
against one or more materialized views , , , ,

e . Command side Query side Query side Query side
that are kept up to date by subscribing
to the stream of events emitted when
data changes. Event Store

Queries = database (type)

Events

— Your readside can be materialised
Views in a RDBMS
— Or in a k/v store / cache

— Or in memory
— Or...

Views are optimised for specific query
use cases. Multiple Views from same
events. They are updated

asynchronously and can be rebuilt from
Events.

Event Log is our Source of Truth

Read

' data store
- >
4 ioe

Read side model

Queue in reliable messaging infrastructure

- - - - - - -

uPdafe Write side E
data store .

Transaction scope

)) '52.\3};;;@; v
E to update Read side |
: 2
1 '
LR :
I. 7” @" ’

'
L s = —-—

Write side model

—

Write side

I\

\ Query response

User views

data in the UI
Interfaces

™
] >4

User makes a clnamge
in the Ul

Service

Commamd

Implement each business transaction
that spans multiple services as a saga. A
saga is a sequence of local transactions. Liguued uarguener

Each local transaction updates the Ureles Custetnies
database and publishes a message or
event to trigger the next local
transaction in the saga. If a local
transaction fails because it violates a
business rule then the saga executes a reder Cuzturna
series of compensating transactions
that undo the changes that were made
by the preceding local transactions.

Using Sagas instead of 2PC

'Saga

Local transaction Ewent | ocal transaction ¢, Local transaction

Order

How do we get our Domain
Events? With Event Storming!

— Part of Domain Driven Design
— [t is highly analog
— Steps:
— Create domain events
— add commands that caused the
event
— add an actor / user that executes
the command
— add corresponding aggregates

31

— Event Sourcing and Clustering: https://www.youtube.com/
watch?v=2wSYcyWCtx4

— Two generals Problem: https://www.youtube.com/watch?
v=holjbuSbv3k

— The hardest part of microservices is your data: https://
www.youtube.com/watch?v=MrVODqTqpFU

