
Microservices
Security

Navigate : Space / Arrow Keys | - Menu | - Fullscreen | - Overview | - Blackout | - Speaker | - HelpM F O B S ?

1 / 59

Content
Basics
Service-to-Service authentication and authorization
OAuth2
OpenID Connect

Microservices 2018

2 / 59

Basics

Microservices 2018

3 / 59

Authentication
The application confirms that a party is who she is e.g. by typing in a

username and a password in classical applications but there are
also other options like smartcards, 2FA and many more.

Microservices 2018

4 / 59

Authorization
Is an already authenticated user allowed this or not.

Microservices 2018

5 / 59

Role-based access control (RBAC)
Role-based access control determines what a user is allowed to do

based on his assigned roles e.g. AUTOMOTIVE_TEAM_LEADER

Microservices 2018

6 / 59

Access control list (ACL)
An ACL captures a list of principals (maybe a single person or a

group) with their access level e.g.
Administrators – Full access
Helpdesk – Read-Write access
Any – Read access

Microservices 2018

7 / 59

Considerations
Does the API gateway handle all the authentication and authorization stuff?
If it does so, how do you enable your developers to test their services in a
production-like environment?
How fine-grained are your roles? (Organization structure!)
How many roles do you define?
Do you need an ACL approach (better you don’t!)
What about other security layers? Firewalls, encryption, message authentication
codes(MAC),…
Never, never, never, never,… implement your own encryption algorithm!

Microservices 2018

8 / 59

Authentication & authorization basics

When you think of authentication and authorization most people think of people
consuming your service(s) but that’s just half the truth. If you’re building a
microservice application your services also have authenticate and authorize to be
able to call other services!

First idea: well my services are protected by the firewall (internal perimeter) so…
why should I care about authentication and authorization between them? What
about man-in-the-middle attacks in the internal network?

Microservices 2018

9 / 59

Microservices 2018

10 / 59

HTTP(S) Basic auth
Client sends username and password in an HTTP header (typically the
Authorization header) in the format <username><password> e.g.
WhtZWQudGhlVGVycm9yaXN0OlNpbGVuY2UhMUsxbGxZMHU=
Seems cryptographic, doesn’t it? No! It’s just a BASE64 encoded string…
You’ll need HTTPS for your cross services calls to ensure that the credentials are
not getting stolen
Public certificates are expensive (depending on the security level), the
management of local PKI seems easier as it is (revocation of certs, …)
How do you validate the username and the password? Local credentials store,
LDAP, Single-Sign On (SSO) provider?

Microservices 2018

11 / 59

HTTP(S) Basic auth
Solution 1: Use a SSO if possible (we’ll have a look at how to do this later on)
Solution 2: Client certificates (we won’t go into this, ask if you would like to know
how this works)

Microservices 2018

12 / 59

Service account
Any service should have his own service account
The password of a service account can be as complex as you can think as no one
ever has to type or remember it (you got me right? never!)
Change the passwords of the service accounts frequently (frequently does not
mean every 5 years)
A service account is always as limited as possible e.g. if the account does not have
to log on to a machine it should not be able to do it!
There are tools available to handle the creation, deletion and management of
service accounts for different systems like Hashicorp Vault

Microservices 2018

13 / 59

https://www.vaultproject.io/

Hash-based message authentication code (HMAC) over HTTP
A message authentication code is based on hashing operation. It

takes the body, creates a hash of it based on a public key as kind of
signature procedure and add the signature to the request. The

server takes the signature validates it with his private key and drops
the request if the validation failed.

Microservices 2018

14 / 59

Pros and cons

Advantages:
By checking the signature man-in-the-middle attacks are (mostly) impossible
May be faster that HTTPS
Traffic is cacheable as no HTTPS is required

Disadvantages:
No default implementation
PKI needed to provide certificates (revocation problem)
Certificates have to be distributed over a secure connection
No encryption, just source validation!

Alternative: JWT (JWS/JWE)

Microservices 2018

15 / 59

API keys
Everyone has heard about so called "API keys"
There’s no default mechanism to create an API key
There may be just one hard coded API key, one API key per user or multiple API
keys per user (with different access rights/roles/claims)
You could use public-private keys to generate APIs or so many other procedures…
We won’t look any further as it depends on your use case, technical infrastructure
any more how you could implement an API key and there are other ways to solve
this which are standardized (OAuth/OAuth2, OpenID Connect)

Microservices 2018

16 / 59

Confused deputy problem

Microservices 2018

17 / 59

Microservices 2018

18 / 59

Problem description

So you have authenticated a user by its username and password
The username interacts with your online shop service – till now all is fine
but now you online shop service has to contact the shipping service and the order
service to get some additional information (you’re right, that’s evil! But let’s
assume it for a moment.)

Microservices 2018

19 / 59

Problem description

How should the shipping service or order service authenticate themselves the
user when the information about the principal is gone in the SSO gateway or the
scope of the token (we’ll have a look at scopes later on) does not include the
shipping service and the order service?
There’s no easy solution for this! You might choose to trust the online shop
service, you might pass the access token through the SSO gateway or do a kind of
cross service call

Microservices 2018

20 / 59

Advisories

If you have to do password hashing and validation on your own, do it right. Use
algorithms that are meant to be used for that:

PBKDF2: is designed to be slow on CPUs, unfortunately not on GPUs
BCrypt is not just optimized to be slow on CPUs but also to be memory-intensive so it should be
harder to be implemented on GPUs and ASICs

If you have to do encryption use the currently recommended encryption
algorithms (AES256) and don’t implement on your own! If you are not sure what is
recommended have a look here

Microservices 2018

21 / 59

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=6

Advisories

If you have to do cryptographic signing (you also got it, don’t it on your own) if
possible use elliptic-curve * cryptography! Otherwise RSA4096 is told to be safe for
the next years (but not post-quantum) If you have to store certificates, have a look
what your platform is offering you (e.g. Windows cert store, TPM,…)

Microservices 2018

22 / 59

Service-to-Service authentication & authorization -
Microservices

Microservices 2018

23 / 59

Microservices 2018

24 / 59

Single-Sign On (SSO)
SSO is great!...but what is it?
Most of the time you’re speaking about SSO you’re meaning ticket based SSO
(there’s a second variant called local SSO but that’s more like a password safe than
a real protocol)
SSO means that you’re proving that you are who you are to one central party and
that party hands you over a token
Whenever you’re accessing another resource and you’re required to authenticate
you’re doing it with the help of the SSO token to avoid passing your credentials to
another resource than the central party

Microservices 2018

25 / 59

SSO - protocols
There are a few of SSO protocols which are well known (and some

not so well known):
OAuth
OAuth2
OpenID Connect
Security Assertion Markup Language (SAML)
Kerberos

Microservices 2018

26 / 59

OAuth2
As OAuth has a few design flaws it was abandoned and replaced by OAuth2
OAuth2 was developed as an authorization protocol (not for authentication!)
OAuth2 is based on JSON (in the opposite to SAML which is based on XML and
SOAP – is anyone remembering SOAP?)
OAuth2 was originally developed by Twitter (2006) to delegate access rights to
other applications
Since 2012 it is standardized in the RFC 6749

Microservices 2018

27 / 59

https://tools.ietf.org/html/rfc6749

OAuth2 - Roles
There are 4 roles in OAuth2:

Resource owner
Resource server
Client
Authorization server

Microservices 2018

28 / 59

Resource owener

Definition of the spec:

So the resource owner is the one who’s authorizing an application
to access his data – you’re well aware of this grant process as you all

did it already multiple times!

Note that there may be edge-cases where a resource owner isn’t
asked to grant any access. E.g in enterprise environments where

the data is not owned by a single user but by an company and the
company decides to share the data.

 An entity capable of granting access to a
protected resource. When the resource owner

is a person, it is referred to as an end-user.

Microservices 2018

29 / 59

Resource server

Definition of the spec:

Every application which stores data of you is a resource server. E.g.
the internal GitLab instance stores your students contact data, your

activity, your repositories and many more. If you’re installing the
LabCoat app on your mobile the app needs access to your GitLab
account to be able to display your repositories and so on, so the
GitLab server is the resource server. But when you’re importing a
GitHub repository to GitLab, GitLab needs access to your GitHub

account so a resource server may also be a client at the same.

 The server hosting the protected resources,
capable of accepting and responding to

protected resource requests using access
tokens.

Microservices 2018

30 / 59

Client

Definition of the spec:

According to the spec a client may be any application that requests data.
As already mentioned a resource server may also be a client at the same time.

 An application making protected resource
requests on behalf of the resource owner and
with its authorization. The term „client“ does

not imply any particular implementation
characteristics (e.g., whether the application

executes on a server, a desktop, or other
devices).

- e.g., whether the application executes on a server, a desktop, or other devices

Microservices 2018

31 / 59

Authorization server

Definition of the spec:

The authorization server is the central party handing you over an access token
(the term access token is special in OAuth2)
The authentication process is not specified so it may be with username and
password, username, password and OTP, smartcard,…

 The server issuing access tokens to the client
after successfully authenticating the resource

owner and obtaining authorization.

Microservices 2018

32 / 59

Scopes

Scopes are defining a kind of roles on APIs
A client has to require scopes to be able to access the APIs grouped in the scope
Multiple resource servers may share one scope but it’s also possible to have
multiple scopes on one resource server

See also .GitHub docs about scopes for OAuth Apps

Microservices 2018

33 / 59

https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/

OAuth2 - Tokens
OAuth2 differs between the following two types of tokens:

Access tokens
Refresh tokens

Microservices 2018

34 / 59

Access tokens

Access tokens are short living (between a few minutes and a few hours)
Access tokens are required by the client to access resources served by resource
servers
The access token contains the granted scopes
The OAuth2 spec nor does specify how a access token should look like (JWT,
Bearer,…) neither does it specify what exactly should be contained in it. So it
depends on the provider of the token
But when this token exceeds within a few minutes, why isn’t the client repeatedly
asking for my credentials you ask?

Microservices 2018

35 / 59

Microservices 2018

36 / 59

Refresh tokens

Depending on the flow a client receives with the access a second token called
refresh token
In contrast to the access token the refresh token a very long lifetime (can be over a
year)
The refresh token also contains the information which scopes where granted and
for which client the access was granted
The refresh token has to be stored secured in the client
When the access token exceeds the client is able to fetch a new one by passing the
refresh token to the authorization server
On the one hand that’s pretty nice because whenever a token is lost an attacker
can’t do much with it because of the short lifetime but on the other hand if the
refresh token is stolen you have real problem!

Microservices 2018

37 / 59

OAuth2 - Client registration
To be able to interact with an authorization server it’s not enough to just know its
address but the client has to be registered within the authorization server
The registration at an authorization server typically requires two parts:

The client type (confidential or public)
A redirect URI

OAuth2 providers are allowed to require more information for the registration,
e.g.:

Name of the application
Description
Logo
License terms
…

When the registration is completed you’re getting a client id and a client secret
where the client id is kind of a username and the client secret is kind of a
password (and they should be handled equivalently)

Microservices 2018

38 / 59

OAuth2 - flows

Microservices 2018

39 / 59

Microservices 2018

40 / 59

Overview

Flows are describing the interaction between the different roles specified in
OAuth2
The abstract flow is meant as an orientation and can be interpreted likes this:

1. The application (or client) asks for access to resources/scopes of the user
2. User grants access (application gets an so called authorization grant)
3. The application claims for an access token by sending the authorization grant and its identity

(client id and client secret) to the authorization server
4. If client id, client secret and authorization grant are valid the application get’s an access token
5. The application can now access resources of the user at the resource server

OAuth2 is aware of the following Flows:
Authorization Code
Implicit
Resource Owner Password Credentials
Client Credentials

Microservices 2018

41 / 59

Microservices 2018

42 / 59

Authorization code flow

The Authorization Code flow requires the client to include its client secret when it
claims for an access token. Because of that this flow is mostly used within classical
web applications like JSP/JSF or ASP.NET MVC where the backend can store the
client secret securely
A prerequisite for this flow is that the application can force the user agent to
follow redirects to route the user agent at first to the authorization server and
afterwards back to the client application including the authorization grant
included as query param
The flow is proceeded like this:

1. The client claims for access to user resources by routing the user to the authorization server
2. User (resource owner) grants access
3. Authorization grant gets redirected to a previously registered callback URL
4. Client can acquire an access token by sending the authorization grant, the client id and the client

secret to the authorization server
5. If all params were valid the client gets an access token (and a refresh token)

Microservices 2018

43 / 59

Microservices 2018

44 / 59

Implicit flow

The Implicit flow is designed for mobile and browser apps where confidentiality
can not be guaranteed
Within the Implicit flow the access token is directly handed over to the user agent
of the user
Because of the missing confidentiality there’s no refresh token when the Implicit
flow is used
The flow works like this:

1. The client redirects the user agent to the authorization server for claiming access
2. User has to grant the access
3. User agent is redirected to an previously registered callback URL including the access token (no

authorization grant!)
4. User agent follows the redirect
5. Script in the browser is triggered by the URL and extracts the access token
6. Script passes token to the application

Microservices 2018

45 / 59

Microservices 2018

46 / 59

Client credentials flow

The client credentials flow is designed for cross service calls
Furthermore this workflow can be used if the service is updating its metadata
stored at the authorization server
Within this flow service A creates an access token with his own client credentials
(client id and client secret)
The flow works like this:

1. Client sends his own client id and client secret to the authorization server
2. Client receives access token and can access his own API

Microservices 2018

47 / 59

Microservices 2018

48 / 59

Resource owner password credentials flow

The resource owner password credentials flow is based on letting the user pass his
credentials to the client and the client sending his credentials to the authorization
server.
Because most OAuth2 providers don’t want their users to expose their credentials
to 3rd party apps this flow is often not implemented
The flow works like this:

1. User passes his credentials to the client
2. Client passes the credentials to the authorization server and applies for a access token
3. If the credentials were valid the client receives an access token

Microservices 2018

49 / 59

OAuth2 - conclusion
Scopes are a nice abstraction to tell the user which permissions he's granting the
client
The predefined flows are containing everything you need for a microservice
application
OAuth2 is not an identity framework but an authorization framework
It can be used as an identity framework too but a developer doing this has to
know what he’s doing as there may occur security leaks if he doesn’t

Microservices 2018

50 / 59

OpenID Connect (OIDC)
OpenID Connect was designed a an identity framework
It is based on OAuth2
OpenID connect is much more restrictive than OAuth2 as it specifies a token
format, some default claims a token has to contain, API endpoints with special
routes that have to exist and much more
Special attention was paid on interoperability within different providers

Microservices 2018

51 / 59

Components/specs
OpenID Connect consists of the following three parts:

 (token specs, flows, endpoints, claims, implementation advises and security
remarks)

 (assists users to log on to an application with an account of a provider
completely unknown prior to the first log on of the user, relies on WebFinger,
exposes the endpoints /.well-known/webfinger and /.well-known/openid-
configuration for dynamic configuration of a new application)

 (without this concept a discovery of a new OpenID
Connect provider would be useless. Enables applications to register themselves on
the fly if required)

Core

Discovery

Dynamic client registration

Microservices 2018

52 / 59

http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html

Tokens
As already mentioned OpenID Connect is much more restrictive than OAuth2 and
defines the concrete format and even the content of all tokens
OpenID Connect uses JWT (but you can choose between JWE and JWS) for all
tokens
OpenID Connect is aware of the following tokens:

Identity token
Access token
Refresh token

Microservices 2018

53 / 59

Identity token

The identity token is kind of a passport of a user
It has to contain 20 claims e.g.:

Sub
Name
Nickname
Prefered_username
Profile
Email
…

The identity token can be used for many use cases, e.g.:
Stateless sessions
Identification at 3rd party apps
Key exchange (to get an access token)

Microservices 2018

54 / 59

Access token

Like OAuth2 OpenID Connect specifies an access token
The functionality is equivalent to OAuth2
If the app only claims for the scope "openid" the response will only contain an
identity token but no access token

Microservices 2018

55 / 59

Flows
OpenID Connect specifies just 3 flows:

Authorization Code (is like in OAuth2)
Implicit (is like in OAuth2)
Hybrid (this one is a little bit tricky)

Microservices 2018

56 / 59

Microservices 2018

57 / 59

Hybrid flow

The Hybrid flow is mixture of Authorization Code and Implicit flow
It’s try to compensate the disadvantages of the Implicit flow by added a refresh
token which is only available in the backend of an application but not in the
(unsecure) frontend
The flow works like this:

1. Frontend applies for access to resources of the resource owner
2. User grants access
3. Authorization server redirects user agent to previously registered callback URI
4. User agent follows redirect including the encoded identity token and optionally encoded access

token and authorization code
5. Frontend extracts identity token and optionally the access token and authorization code
6. Script passes extracted token(s) to frontend application
7. Optionally: backend retrieves refresh token with with the authorization code
8. If params are valid backend retrieves refresh token

Microservices 2018

58 / 59

OpenID Connect flows overview
Property Authorization code flow Implicit flow Hybrid flow

All tokens from authorization endpoint

All tokens from token endpoint

Tokens exposed to user agent

Client can be authenticated

Refresh token possible

Communication in one roundtrip

Communication mostly server to server Varies

Microservices 2018

59 / 59

