
Microservices
Service Discovery & API Gateways

Navigate : Space / Arrow Keys | - Menu | - Fullscreen | - Overview | - Blackout | - Speaker | - HelpM F O B S ?



1 / 72

Content
Protocols
Service Discovery
API Gateways

Microservices 2018



2 / 72

Content - Protocols
Gossip
Raft

Microservices 2018



3 / 72

Content - Service Discovery
Client-side service discovery
Server-side service discovery
DNS
Key-value stores

Microservices 2018



4 / 72

Content - API Gateways
Basics
Load balancing strategies
Failover techniques

Microservices 2018



5 / 72

Protocols

Microservices 2018



6 / 72

Protocols - Gossip
Protocol to:

keep a cluster state in sync
manage the clusters health by constantly checking which nodes are
available

Used by Consul (Serf) based on Scalable Weakly-consistent
Infection-style Process Group Membership Protocol (SWIM)

Microservices 2018



7 / 72

http://www.cs.cornell.edu/~asdas/research/dsn02-swim.pdf

Gossip - principles - part 1

Periodic, pairwise, inter-process (or network) interactions
The information exchanged during these interactions is of
bounded size
Agents are synchronizing their state when they interact with
each other
Reliable communication is not assumed

Microservices 2018



8 / 72

Gossip - principles - part 2

The frequency of the interactions is low compared to typical
message latencies so that the protocol costs are negligible.
There is some form of randomness in the peer selection.
Peers might be selected from the full set of nodes or from a
smaller set of neighbors.
Due to the replication there is an implicit redundancy of the
delivered information.

Source

Microservices 2018



9 / 72

https://en.wikipedia.org/wiki/Gossip_protocol

Microservices 2018



10 / 72

Microservices 2018



11 / 72

Microservices 2018



12 / 72

Microservices 2018



13 / 72

Microservices 2018



14 / 72

Microservices 2018



15 / 72

Gossip search sample - remarks

A search query should "age out" after a given time to reduce
traffic
If there are many search queries a maximum of data that
may be exchanged during one “gossip” has to be defined
Given a frequency of 10 gossips per second, a maximum of
30 rounds of gossip per search query and a network of
25.000 machines a query would take just about 3 seconds!

Microservices 2018



16 / 72

Protocols - Raft consensus

Microservices 2018



17 / 72

Raft consensus basics

Designed as an easier alternative to Paxos
Uses leader election to achieve consensus
Models a distributed state machine

Every node is a state machine
All nodes have to apply the same commands in the same order to stay in
sync (same resulting state/transition)

Microservices 2018



18 / 72

Raft consensus basics

Just one leader in a Raft cluster, all other nodes are followers
Leader is responsible for the log replication to all followers
Followers are expecting a heartbeat within a given timeout
otherwise they suspect the leader failing
If a leader fails a new leader is elected

Visualization https://raft.github.io/

Microservices 2018



19 / 72

https://raft.github.io/

Raft - leader election

Leader election is started by a candidate server (a server that
wasn’t contacted by the leader within the timeout period)
Candidate increments the term number (serial for periods
where a leader was elected) and proposes itself as the new
leader and sends a message to all other servers requesting
their vote

Microservices 2018



20 / 72

Raft - leader election

If candidate gets a response with a term number at least as
large as his current term number the election is defeated
and the candidate is switching in follower mode
If the candidate server gets a majority of votes he’s getting
the new leader
If neither happens (split vote) a new term is getting started
(resulting in a new election)

Microservices 2018



21 / 72

Raft - log replication

Leader replicates received requests (commands for the state
machine) to all followers
Leader appends the command to his log as a new entry and
sends a AppendEntry to the followers
When the leader receives confirmation of a majority of his
followers he applies the entry to his state machine (request is
considered committed)

Microservices 2018



22 / 72

Raft - log replication

When a follower learns that an entry was applied by the
leader he applies the entry to his local state machine
In case of a leader crash the new leader enforces a
replication of his log to all followers. To get a consistent state
the leader compares his log with every log of the followers,
takes the latest where they agree and replaces all following
entries with his own

Microservices 2018



23 / 72

Raft - safety rules

Election safety (at most one leader can be elected in a given
term)
Leader Append-Only (a leader can only append new entries
to its logs - it can neither overwrite nor delete entries)
Log Matching (if two logs contain an entry with the same
index and term, then the logs are identical in all entries up
through the given index)

Microservices 2018



24 / 72

Raft - safety rules

Leader Completeness (if a log entry is committed in a given
term then it will be present in the logs of the leaders since
this term)
State Machine Safety (if a server has applied a particular log
entry to its state machine, then no other server may apply a
different command for the same log)

Microservices 2018



25 / 72

Service Discovery basics
Service discovery mechanisms are required for
multiple tasks in a microservice environment:

server resolution for cross service communication
dynamic load balancer configuration
dynamic monitoring configuration
...

Microservices 2018



26 / 72

Approaches
Static configuration files (for the sake of completeness...)
DNS based solutions (e.g. in Kubernetes with CoreDNS)
Specialized products e.g. Eureka & Consul

Microservices 2018



27 / 72

Client-side vs. Server-side Service
Discovery

Microservices 2018



28 / 72

Client-side Service Discovery

Microservices 2018



29 / 72

Microservices 2018



30 / 72

Workflow

1. Service A/B.1/B.2 starts and registers itself at
central service registry

2. Service A asks for one endpoint/all endpoints of
Service B

3. Service Registry returns one/all endpoints to
Service A

4. Depending on the implementation Service A
decides which instance to call or calls the only it
is aware of

Microservices 2018



31 / 72

Server-side Service Discovery

Microservices 2018



32 / 72

Microservices 2018



33 / 72

Workflow

1. Service A/B starts and registers itself at central
service registry

2. Service A sends requrest to central router (e.g.
an API Gateway)

3. Gateway is redirecting call to concrete endpoint
like a proxy

4. Gateway returns the response it got from the
concrete endpoint to the original caller

Microservices 2018



34 / 72

Service registration

Microservices 2018



35 / 72

Service registration - Self registration

Every client/service registers himself at the service registry
Every client has to deregister himself on failures or when
quitting
Every client has to deal with the API of the service registry
himself
E.g. Netflix Eureka

Microservices 2018



36 / 72

Service registration - 3rd party registration

Clients/services are registered by a external instance
Whenever a client exits the external component deregisters
him\
The external component has to monitor every known service
to ensure that it’s still available
E.g. registrator, Nomad

Microservices 2018



37 / 72

DNS based Service Discovery

Microservices 2018



38 / 72

DNS - viable record types - part 1
Record
name

Explanation

A or
AAAA

Host entries (e.g. www.google.de – IPv4: 172.217.21.35
and IPv6:2a00:1450:4016:80d::2003)

CNAME Alias of a host entry (e.g. www.fh-rosenheim.de and fh-
rosenheim.de)

Service location record (includes port of the service)SRV

Microservices 2018



39 / 72

https://en.wikipedia.org/wiki/SRV_record

DNS - viable record types - part 2s
Record
name

Explanation

Often carries machine-readable data (often used e.g. for
domain validation in Azure, C&C servers,...)

Name Authority Pointer – allows regular-expression-
based rewriting of domain names (e.g. to form URIs)

TXT

NAPTR

Source

Microservices 2018



40 / 72

https://en.wikipedia.org/wiki/TXT_record
https://en.wikipedia.org/wiki/NAPTR_record
https://en.wikipedia.org/wiki/List_of_DNS_record_types

DNS as service registry
A (or AAAA) can be used to locate services (a single A record
may contain multiple IP addresses e.g. amazon.com)
SRV records are even better because it's also possible to
store the port of the service in a SRV record
Every instance has to register itself at a DNS server or a 3 rd
party service has to look for new instances and register them
within a DNS server
Developers and administrators are required to create a
common schema for service naming

Microservices 2018



41 / 72

DNS - naming schemas
Schema sample Use case
<servicename>-

<env>.domain.tld
All environments share the same

domain/DNS server

<servicename>.
<env>.domain.tld

Subdomain per environment (e.g.
test.domain.tld and staging.domain.tld,

keep prod on domain.tld)
<servicename>.env-

domain.tld
Separate domains and DNS servers per

e nvironment

Microservices 2018



42 / 72

DNS as service registry - considerations
Relatively easy to implement
No special software/libraries required
TTL of entries might lead to stale entries
DNS caching
Requires special DNS server implementation to support
dynamic registration

Microservices 2018



43 / 72

Key-value stores for Service Discovery
Classical ones:

ZooKeeper
etcd

Specific for Microservices:
Consul
Eureka

Microservices 2018



44 / 72

Classical key-value stores
Developed as distributed configuration stores
Hierarchical structured
Normally offer some kind of "watches" or "subscriptions"

Microservices 2018



45 / 72

Microservice specific ones
Implement specific domain knowledge (special entities for
services and endpoints)
Offer possibilities to register e.g. health checks to ensure
that registered services are available
Some are also offering configuration stores (e.g. Consul)
Various APIs (e.g. HTTP or DNS)

Microservices 2018



46 / 72

Load balancing basics
Load Balancers are needed to avoid single point of failures
Load Balancers distribute calls sent to them to one or more
instances
Load Balancers keep track of their known backends to avoid
errors when a services is no longer healthy

Microservices 2018



47 / 72

Load balancing basics
Optionally they have additional features like SSL termination

Only one or a few servers where certificates have to be exchanged when
a new certificate is created
No special handling required in the services behind the load balancer
Admins have to take care that communication between load balancer(s)
and nodes is safe (e.g. VLANs)

Microservices 2018



48 / 72

Load balancing basics
In Microservice environments it’s essential that the load
balancer(s) can be reconfigured dynamically (e.g. in
combination with etcd or Consul)
When you’re able to scale your microservice instances but
not the persistence layer of them you’re just moving the
single point of failure one layer backwards!

Microservices 2018



49 / 72

Microservices 2018



50 / 72

Load balancing strategies
Round-robin
Weighted round-robin
Least connection
Weighted least connection
Agent Based Adaptive Load Balancing
Chained Failover (Fixed Weighted)
Weighted Response Time
Source IP Hash
...

Microservices 2018



51 / 72

(Weighted) Round-robin
There are many Round-robin algorithms
The simplest one is to use a FIFO queue to keep track of all
available backends
1. Dequeue
2. Relay request
3. Enqueue

Microservices 2018



52 / 72

(Weighted) Round-robin
Results in max-min-fairness (the longest waiting requests
gets the highest priority)
The weighted round robin algorithm gives every backend a
weight and the scheduler takes the weights into account to
prefer servers with a higher weight before servers with a
lower weight (e.g. used for quality of service (QoS))

Microservices 2018



53 / 72

(Weighted) Least connection
In contrast to round-robin the least connection algorithm
takes the load of every node in account.
The least connection algorithm relays an incoming request
always to the node which has the lowest count of active
connections.

Microservices 2018



54 / 72

(Weighted) Least connection
This way nodes with a higher performance handle more
requests than nodes with lower performance without the
need to configure weights.
The weighted least connection variant enables the
administrator the give nodes a weight. These weights are
considered when two nodes serve the same count of active
connections and the node with the higher weight is
considered first.

Microservices 2018



55 / 72

Agent Based Adaptive Load Balancing
Every node has an local agent installed which reports real
time data to the load balancer (e.g. CPU usage, memory
allocation,...)
Load balancers takes load of every node into to account
when a new request has to be relayed
Can be combined with weighted round-robin or weighted
least connection algorithms
Used e.g. in Windows Terminal Server (RDS role after Server
2003)

Microservices 2018



56 / 72

Chained Failover
All backend nodes are in a predefined chain
Whenever the first node can’t handle/accept another request
the next node in the chain is taken into account and so on
Not a real load balancing protocol!

Microservices 2018



57 / 72

Weighted Response Time
Kind of health check done by the load balancer(s)
Uses the response time of the health check to determine the
fastest server currently available
Whenever a node is under heavy load the response times will
be longer than the response times of a node with least load.
Avoid overload of nodes.

Microservices 2018



58 / 72

Source IP Hash
Algorithm creates a hash of source and destination IP
(unique hash key)
Hash key is used to determine to which node the request
should be forwarded

Microservices 2018



59 / 72

Source IP Hash
When the same client sends another request the hash key
can be regenerated and the client gets forwarded to the
same node
Useful for stateful services (don’t do that in microservices!)
when nodes aren’t able to sync session information because
a client always gets relayed to the same node (as long as its
source IP does not change)

Microservices 2018



60 / 72

Network failover
But wait! If I have 1 load balancer what happens if this load
balancer fails?
Possible solution: multiple load balancers with multiple DNS
A/AAAA records to balance the load of the load balancers ->
but DNS does not check for availability and there are the
caches...

Microservices 2018



61 / 72

Network failover
Better solution: configure network based failover:

Common address redundancy protocol (CARP)
Gateway Load Balancing Protocol (GLBP) (just for routers)

Microservices 2018



62 / 72

Common address redundancy protocol (CARP)
Enables multiple hosts in the same LAN to share a set of IP
addresses
Available on BSD and Linux based hosts
Master-slave (or more polite active-passive) based
One master per group of redundancy
Each group of redundancy shares one virtual IP
A server maybe member of multiple groups of redundancy

Microservices 2018



63 / 72

Common address redundancy protocol (CARP)
Every server needs a second IP address for communication
(best practice is to configure two IP addresses: one for LAN
communication and one for the communication between all
members of the group of redundancy e.g. heartbeats)
Whenever the master fails a slave takes over and answers all
incoming requests
Can be combined with DNS round robin e.g. two groups with
two members each to ensure that always two load balancers
are available

Microservices 2018



64 / 72

Gateway Load Balancing Protocol (GLBP)
Proprietary protocol created by Cisco for redundant routers
Allows weighting parameter to be set
Based on the weights (in a virtual router group) ARP requests
will be answered with MAC addresses pointing to different
routes
Balances in round-robin fashion by default

Microservices 2018



65 / 72

Gateway Load Balancing Protocol (GLBP)
Elects one Active Virtual Gateway (AVG) for each group
AVG assigns every listener (and itself) virtual MAC addresses
which enables Active Virtual Forwarders (AVF)
Each AVF is responsible to forward packages sent to its
virtual MAC address

Microservices 2018



66 / 72

API Gateways
API Gateways are a crucial part of every microservices
environment
API Gateways enable a microservices environment to scale
by implement load balancing (e.g. round-robin based)
Access to specific services is managed by:

DNS-Host per Service (A/AAAA/CName e.g. ServiceA.my-domain.com)
Virtual Routes (e.g. gateway.my-domain.com/ServiceA)

Microservices 2018



67 / 72

API Gateways
API Gateways are the single entry point for your whole
application
API Gateways are a kind of server-side service discovery
(usually just for client apps but it’s possible to use it also for
cross service calls)

Microservices 2018



68 / 72

API Gateways
They also hide implementation details by optionally
aggregating all internal APIs to one (or more in case of
Backends for frontends) in the point of view of the client
app(s)
In the case of custom API Gateways the gateway may also
execute calls to multiple services and aggregate the
responses answering to the client request

Microservices 2018



69 / 72

Microservices 2018



70 / 72

Backend for frontends
Configure a API Gateway per kind of frontend e.g.

One for your web app
One for your mobile app
One for all 3 rd party applications (public API)

The backends for frontends-pattern ensures the optimal API
for every kind of application (e.g. gRPC gateway for desktop
apps but RESTful API for web apps)

Microservices 2018



71 / 72

Microservices 2018



72 / 72

