
Microservices
DevOps

Microservices 2018 1

Content

1. DevOps Introduction
2. Pipeline (continuous integration / continuous delivery /

continuous deployment)
3. Popular CI Tools
4. Infrastructure as Code

Microservices 2018 2

DevOps Introduction

— DevOps is a software engineering
practice that aims at unifying
software development (Dev) and
software operation (Ops)
— People, processes and tools
— working together
— to enable continuous delivery of

value
— to the end users
— fast(er)

Cultural change required
We just focus on the software delivery
process process!

Microservices 2018 3

DevOps - Challenges

— development vs. operation
— agile vs. stability
— a lot iterations
— a lot of releases
— monitoring of all services
— code quality

Microservices 2018 4

Goals

The goals of DevOps span the entire
delivery pipeline.
- Improved deployment frequency
- Faster time to market
- Lower failure rate of new releases
- Shortened lead time between fixes
- Faster mean time to recovery
- Easier onboarding for new developers

Dev: Create Change, Add or modify
features

Ops: Create stability, Create or enhance
services

Microservices 2018 5

Plan

— general project management tasks
— backlog
— documentation
— scrum planning
— Retrospectives
— use mvp's – don't develop the hole software without test! (from

lean startup)
— event storming, story mapping
Microservices 2018 6

Code

— coding with git (hopefully not with svn anymore)
— code reviews

Microservices 2018 7

build

— Continuous Integration
— different build tools for your project
— package manager

Microservices 2018 8

test

— Code coverage report
— automatic test
— acceptance testing
— Integration testing

Microservices 2018 9

release

— Packaging like building a jar or a docker container
— Pre-Deployment-Staging
— Release automation

Microservices 2018 10

deploy

— configuration
— production staging
— Infrastructure as a Code (IaaC)

Microservices 2018 11

operate

— logging
— tracing
— exception handling
— performance monitoring
— support / service desk
— feature toggles
— metrics
Microservices 2018 12

DevOps Pipelines

Microservices 2018 13

Automate Almost Everything for Microservice

— The build
— database change (flyway) or Events when Event Sourced
— deployment to test/staging/production environments
— tests
— monitoring / remediation plans
— Infrastructure as code
— Service discovery, DNS, Load Balancing, Auto Scaling, …

Your continuous deployment pipeline should be a model of your
process for getting software from version control into the hands
of your users.
Microservices 2018 14

Popular Pipeline Tools

— Circle CI
— Travis CI
— GitLab CI
— Bamboo
— Codeship
— Jenkins

Microservices 2018 15

Circle CI Sample

— In Exercise 1 we will use circle ci
version: 2
jobs:
 build:
 docker: # use the docker executor type; machine and macos executors are also supported
 - image: circleci/node:4.8.2 # the primary container, where your job's commands are run
 steps:
 - checkout # check out the code in the project directory
 - run: echo "hello world" # run the `echo` command

Microservices 2018 16

Infrastructure as Code - History

— In the past, administrators have taken
care of each server for its entire
lifecycle

— Every server was kind a „piece of art“
— Every server hosted a large number of

services
— To be able to restore a server,

administrators created full backups of
every server (e.g. the /etc directory of
Linux servers)

Microservices 2018 17

Introduction - Intro

— Define the configuration of your whole infrastructure as code
— Whenever you don’t need a server any more delete it and

restore it if needed (only data backup and code is required)
— It’s easy (and required) to put all your infrastructure code into a

version control system
— Test your infrastructure code as you test your program code!
— New servers can be bootstrapped full-/ or semi-automatic
— It doesn’t matter if you’re building a Docker container or if

you’re installing a virtual or physical server – infrastructure
code may be applied to all of them

— Focused on managing a large number of servers (instead
Microservices 2018 18

IaC Fundamentals

— Server or agent collects facts about target system
— Configuration may be applied multiple times leading to the

same result (means no change if not necessary)
— Process of applying configuration may be forced
— Configuration describes a desired state of a machine

(configuration files, installed packages, existence of users,
running services, …)

— Most of the systems abstract the concrete operating system
(e.g. the concrete package manager)

— Most of the systems are resource orientated to describe
(Packages, Files, Users/Groups, Services)

Microservices 2018 19

