
Microservices
Container - Kubernetes (K8s)

Navigate : Space / Arrow Keys | - Menu | - Fullscreen | - Overview | - Blackout | - Speaker | - HelpM F O B S ?

1 / 32

Content
Challenges in distributed container platforms
Container orchestration platforms
Kubernetes

Microservices 2018

2 / 32

Container orchestration platforms

Microservices 2018

3 / 32

Why clustering & orchestration platforms?
High availability
Scalability
"Scale out" instead of "scale up"
Simplify the maintenance of cluster nodes (updating,
replacement, hardware maintenance,...)

Microservices 2018

4 / 32

Challenges in distributed container
platforms

Microservices 2018

5 / 32

Persistence

Microservices 2018

6 / 32

Persistence - challenges

How to store the data?
NFS
vSphere volumes
SAN storages (EMC, HPE 3PAR,...)
Cloud storages...

Microservices 2018

7 / 32

Persistence - tasks

Choose one or multiple persistence drivers that
are available for Docker and K8s:

Azure File and Disk
AWS EBS
GCE PD
Glusterfs
Ceph RBD
vSphere

Microservices 2018

8 / 32

Persistence - conclusion

The choice of a persistence driver depends on the
environment (on premise vs. cloud)
Which level of latency is required (SSD vs. HDD storage)
Which kind of access is required? (Exclusiv vs. shared access
of volumes)
Is there already storage infrastructure available?
What kind of deployment is planned? (Development, staging,
production)

Microservices 2018

9 / 32

Networking

Microservices 2018

10 / 32

Networking - challenges

Load balancing
Service publishing (especially from outside the cluster)
Service discovery (cross service calls)

Microservices 2018

11 / 32

Networking - tasks

Application publishing - how to route traffic to container
running within a cluster system
Cross container communication - how to access a container
running on a different node transparently
How to isolate applications within the cluster system - how to
run multiple environments (e.g. staging and production)
side-by-side
Service Discovery - how to access other services without
knowing their IP addresses (and probably the port used by
the container)

Microservices 2018

12 / 32

Configuration and secrets

Microservices 2018

13 / 32

Configuration and secrets - tasks

Central management of configuration elements
Mounting configuration elements into container instances
(via file system mounts or environment variables)
Sharing of configuration elements across nodes and
container instances
Storing secret variables e.g. AWS credentials, certificates,...

Microservices 2018

14 / 32

Scaling

Microservices 2018

15 / 32

Scaling - challenges

When to scale up and down?
When to consider the new instance for new requests?
How to avoid service interruptions by scaling down while an
instance is still processing a request?
How to automatically reconfigure load balancers?

Microservices 2018

16 / 32

Hardware access

Microservices 2018

17 / 32

Hardware access - challenges

How to enable containers to access hardware devices e.g.
GPUs
How to ensure that container is scheduled on a node where
the expected device is available
How to manage drivers so that the driver used within the
container equals the one of the host system (if not provided
by the kernel)

Microservices 2018

18 / 32

Hardware access - solutions

Device plugins API to abstract hardware access of containers
Device plugins for GPUs:

NVIDIA/k8s-device-plugin
intel/intel-device-plugins-for-kubernetes
RadeonOpenCompute/k8s-device-plugin

Some of them (like the Nvidia GPU plugin) are also available
for Docker (nvidia-docker) to enable local debugging

Microservices 2018

19 / 32

Kubernetes

Microservices 2018

20 / 32

Kubernetes architecture

Microservices 2018

21 / 32

Microservices 2018

22 / 32

Kubernetes basic elements
Pods
Deployments
Services
Ingresses
Jobs
ConfigMaps
Secrets
HPA
PDB
...

Microservices 2018

23 / 32

Kubernetes basic elements - Pods
apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

Microservices 2018

24 / 32

Kubernetes basic elements - Pods

Pods are the most atomic element in Kubernetes
A Pod might contain multiple containers
A Pod is always scheduled on a single worker/minion
Containers within a Pod can access each other by calling
localhost or 127.0.0.1
Because all containers of a Pod are scheduled on a single
node local volume mounts are available for all containers

Microservices 2018

25 / 32

Kubernetes basic elements - Deployments
apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx�deployment
 labels:
 app: MyApp
spec:
 replicas: 3
 selector:
 matchLabels:
 app: MyApp
 template:
 metadata:
 labels:
 app: MyApp

spec:

Microservices 2018

26 / 32

Kubernetes basic elements - Deployments

Deployments are a high level approach to deploy
containerized applications to a Kubernetes cluster
A deployment triggers always the creation of a
ReplicationController
The corresponding ReplicationController takes care of
the Pod creation for the Deployment
Because a Deployment 'includes' a
ReplicationController it is possible to set the number of
replicas created when the Deployment is created (defaults
to 1)
The spec element of a Deployment contains the template
used to create new Pods (including metadata,...)

Microservices 2018

27 / 32

Kubernetes basic elements - Services
kind: Service
apiVersion: v1
metadata:
 name: my�service
spec:
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 8080
 targetPort: 80

Microservices 2018

28 / 32

Kubernetes basic elements - Services

Every service has a DNS A record within a Kubernetes cluster
- default is <service-name>.<namespace-
name>.svc.cluster.local (and a SRV record but more on
that later)
Services are the Kubernetes native way of load balancing
Services normally have a selector spec to determine which
pods should be used to redirect the traffic to (based on the
labels of a pod)
Available types of a Service:

ClusterIP (default)
NodePort
LoadBalancer
ExternalName

By using the type ExternalName it's possible to use the
Kubernetes DNS to route traffic to external services

Microservices 2018

29 / 32

Kubernetes basic elements - Ingresses
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: test�ingress
 annotations:
 nginx.ingress.kubernetes.io/rewrite�target: /
spec:
 rules:
 - http:
 paths:
 - path: /testpath
 backend:
 serviceName: test
 servicePort: 80

Microservices 2018

30 / 32

Kubernetes basic elements - Ingresses

An Ingress resource is basically just a routing rule for an
Ingress Controller deployed to the cluster
The Ingress controller is available e.g. by running a
NodePort Service of Pods running an Ingress controller
immplementation (e.g. kubernetes/ingress-nginx)
Whenever a new Ingress resource is created the
corresponding Ingress Controller should be reconfigured to
be able to route traffic accordingly to the created Ingress
resource
A single Ingress resource might contain multiple rules
(multiple hosts, multiple paths, multiple schemes,...)

Microservices 2018

31 / 32

Why Kubernetes for Microservices?
Kubernetes already includes mechanisms for crucial tasks
like service discovery and load balancing
Kubernetes is able to dynamically scale deployments based
on metrics like CPU and memory but also based on custom
metrics e.g. avg. response time of HTTP requests
Kubernetes itself can be scaled out to huge deployments of
500 nodes and thousands of containers
There's a huge and still growing eco system of tools and
frameworks available for Kubernetes (e.g. Knative,
Spinnaker, Prometheus-Operator, Istio,...)

Microservices 2018

32 / 32

