
Microservices
Container - Basics

Navigate : Space / Arrow Keys | - Menu | - Fullscreen | - Overview | - Blackout | - Speaker | - HelpM F O B S ?



1 / 29

Content
1. Container vs. virtualization
2. Container basics
3. History of Docker
4. Docker CLI
5. Creating custom images
6. Dockerfiles
7. docker-compose

Microservices 2018



2 / 29

Container vs. virtualization

Microservices 2018



3 / 29

Virtualization - Pros
Many excellent hypervisors available
Feels like "ordinary" systems for administrators and
developers
No special knowledge needed

Microservices 2018



4 / 29

Virtualization - Cons
Resource overhead for every virtual machine
Takes longer to setup if no special tools are used (Puppet,
Chef,... covered later)

Microservices 2018



5 / 29

Containers - Pros
Lower resource overhead
Very fast setup when prebuilt container images are available
Isolation of every container
Stable environment

Microservices 2018



6 / 29

Containers - Cons
Training of developers and administrators required
Getting complex if cluster is required (Kubernetes, DC/OS,
Swarm)
Backup

Microservices 2018



7 / 29

Container basics
Every container engine (e.g. Linux Containers (LXC)
or Docker) is based on two Linux Kernel features:

Process namespces
Control groups (cgroups)

Microservices 2018



8 / 29

Namespaces
Introduced in the Linux Kernel 2002
Inspired by Plan 9 from Bell Labs
Later on extended to support Process ID (PID) namespaces

Namespaces used in Docker:
pid - PID isolation
net - managing network interfaces
ipc - managing access to inter-process communication (IPC)
resources
mnt - managing filesystem mount points
uts - isolating kernel and version identifiers (Unix
Timesharing System (UTS))

Microservices 2018



9 / 29

Control groups
cgroups are used to restrict the resources a process or
process group can allocate
cgroups can be used to restrict classic resources e.g. RAM or
CPU shares a proceses can allocate
it is also possible to utilize cgroups to restrict access to
certain devices

Microservices 2018



10 / 29

History of Docker
01/19/2013 - Initial commit
03/01/2013 - First announcement
10/29/2013 - Rebranding of dotCloud to Docker Inc.
07/01/2014 - Microsoft, Red Hat, IBM, Docker,... joined the
Kubernetes project
10/15/2014 - Microsoft announces Docker support in
Windows Server 2016
07/21/2015 - First Kubernetes version
06/08/2016 - Native Docker support with Hyper-V on
Windows
06/20/2016 - Docker Swarm is built-in with Docker 1.12
07/19/2018 - Docker for Mac/Windows 18.06 stable ships
with Kubernetes built-in

Microservices 2018



11 / 29

Microservices 2018



12 / 29

Why Docker?
No more time consuming setup of servers:

Dependencies
Configurations
Documentation for administrators

Every application/component can be packaged in a container
(almost)
Upgrades of containers are fast (if done right)
Developers to not need to setup a heavy development
environment but just start a few containers (docker-
compose!)

Microservices 2018



13 / 29

Administrators "only" have to pull the container images to
deploy to production
Containers can easily scale out (think of 5 containers of the
service instead of just 1)
Rollback of an entire application/a single component is
possible by switching the container image (with proper
tagging)

Microservices 2018



14 / 29

Why Docker in Microservices?
Create a container per service
Scale out a single service instead of the whole application by
deploying more containers
Continuous integration & continuous delivery

E.g. automatically build new container images
Deploy new containers to testing, staging (and optionally production)
environments depending on which branch you are building

Existing eco systems for service discovery and distributed
configuration (see chapters 10 and 11)
Clustering solutions available (Kubernetes, Docker Swarm,
DC/OS Mesos,...)

Microservices 2018



15 / 29

Docker CLI - Basics
CMDlet Explanation

docker --help

docker ps Show running containers

docker ps -a Show all existing containers
(including stopped)

docker images Show all local images

docker run –ti
<image[:version]>

Start a new interative container

docker run –d
<image[:version]>

Start a new container i daemon
mode (in the background)

Microservices 2018



16 / 29

CMDlet Explanation
docker rm <container

id/name>
Removes an existing

container if it is stopped

docker rm –f <container
id/name>

Removes an existing
container even it is still

running
docker exec –ti <container

id/name>/bin/bash
Attaches a Bash instance to

a running container

docker rmi <image id> Removes a local container
image

docker stop <container
id/name>

Stops a running container

docker commit <container
id/name> [repository[:tag]]

Create a new image from
an existing container

Microservices 2018



17 / 29

Docker CLI - Build and registry
CMDlet Explanation

docker build
[[registry/]user/image

name]

Create a new container based on
a Dockerfile in the same directory

docker build
[[registry/]user/image

name:tag]

Create a new container based on
a Dockerfile and add a tag to it

docker push
[[registry/]user/image

name]

Push a built image to a registry
(default is Docker Hub)

docker login [registry Login to a (private) Docker
registryMicroservices 2018



18 / 29

Docker images

Microservices 2018



19 / 29

https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/#container-and-layers

Concepts
Every image consists of one or multiple layers
Every layer is a kind of a snapshot and can be removed
It is possible to inspect how a specific layer was created
Each layer is nothing more than a .tar.gz archive which will
be applied to a base image whenever a container is created
When an image is rebuilt, the Docker daemon recognizes
which layers aren't affected and is keeping them as they are
to speed up the build process

Microservices 2018



20 / 29

Creating a new Docker image
There are two ways to create a new Docker image:

Create a new container, do all required changes on your own e.g. via
bash and commit the changes
Create a Dockerfile, describe all changes which have to be made to the
base image and build it with the Docker CLI

Most container are built with with Dockeriles because it is
easier to make small changes and recreate an image.
Building container manually is only acceptable for proof-of-
concepts or development (exceptions are container images
built with e.g. Ansbile more on that later)

Microservices 2018



21 / 29

Sample Dockerfile
our base image
FROM alpine:3.5

Install python and pip
RUN apk add ��update py2-pip
upgrade pip
RUN pip install ��upgrade pip
install Python modules needed by the Python app
COPY requirements.txt /usr/src/app/
RUN pip install ��no�cache�dir �r /usr/src/app/requirements.txt
copy files required for the app to run
COPY app.py /usr/src/app/
COPY templates/index.html /usr/src/app/templates/
tell the port number the container should expose
EXPOSE 5000

Source

Microservices 2018



22 / 29

https://github.com/docker/labs/tree/master/beginner/

Dockerfile - Basics
Command Explanation

FROM <image>[:tag] Declares base image which will be used

RUN <command> Command to run while building the
container (creates a new layer)

CMD ["executable"
[, "param1",

"param2", ...]]

Provide a default command when a
new container is started

EXPOSE <port
number>

Declare a port which will be exposed by
the container (e.g. 80 for nginx or

Apache web server)

Microservices 2018



23 / 29

Command Explanation
ENV <key> <value> Declare an environment variable

for the container
ARG <key> [<value>] Declare a build argument and

optionally set a default value
ADD <src> <dest> Copy files or directories from local

or remote URLs into the container
image

COPY <src> <dest> Copy files or directories from local
URLs into the container image

ENTRYPOINT
["executable"[,

"param1", "param2",
...]

Declare the entrypoint of the
container when it is started

Microservices 2018



24 / 29

Command Explanation
VOLUME ["/data"

]
Declare a mount point to share data
between the host and a container or

between containers (persistence!)
USER

<user[:group]>
Set the user context (and optionally the
group) for all following RUN, CMD and the

ENTRYPOINT in the Dockerfile

WORKDIR
/path/to/workdir

Sets the working directory for every
following RUN, CMD, ENTRYPOINT, ADD or
COPY command, can be used multiple

times in one Dockerfile, the directory will
be created if it does not exist, the path can

also be relative

See also Docker builder reference
Microservices 2018



25 / 29

https://docs.docker.com/engine/reference/builder/

docker-compose

Microservices 2018



26 / 29

Sample stack

Source

Microservices 2018



27 / 29

https://vincent.composieux.fr/article/run-a-symfony-application-using-docker-and-docker-compose

Concepts
Tool to create multi-container applications
Define all services the application consists of
Separate services optionally in multiple networks
Configure services (set environment variables, expose ports,
mount volumes and so on)
Start and stop a multi-container application by running a
single command (docker-compose up or docker-compose
down)
An extended version is used to deploy multi-container
applications to docker Swarm

Microservices 2018



28 / 29

Other Docker cluster systems use similar formats (e.g. Pod
definitoin in Kubernetes)
Docs:

Cheatsheet:

https://docs.docker.com/compose/compose-
file/compose-file-v2/

https://devhints.io/docker-compose

Microservices 2018



29 / 29

https://docs.docker.com/compose/compose-file/compose-file-v2/
https://devhints.io/docker-compose

