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Content
Creating better, smaller Docker images
Logging
Health checks and monitoring
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Multi-stage builds
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Some facts...
Introduced with Docker 17.05
Use multiple pre-built build environments (e.g. Node.js +
Golang)
Create smaller images containing only binaries and required
assets
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Sample
FROM golang:1.7.3
WORKDIR /go/src/github.com/alexellis/href�counter/
RUN go get �d �v golang.org/x/net/html
COPY app.go .
RUN CGO_ENABLED=0 GOOS=linux go build �a �installsuffix cgo �o ap
 
FROM alpine:latest
RUN apk ��no�cache add ca�certificates
WORKDIR /root/
COPY ��from=0 /go/src/github.com/alexellis/href�counter/app .
CMD ["./app"]
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Image minifying
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How to minify?
Reduce number of layers (remember when new layers are
created)
Exclude development dependencies, test assets,...
Try to use as small base images as possible ( )
Use multi stage builds

Alpine
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https://hub.docker.com/_/alpine/


Uh, that's neat but I want more!
Do you really know which

files/libraries/dependencies are necessary? There's
a nice 'hack' to see which files ares used.
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Problem

the Linux kernel does not update the access times of files
when they're read (anymore)
there are probably special user space tools to monitor file
access but requires installation,...
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Hack

1. deploy your application to a VM
2. move the binaries to a separate partition/virtual

disk
3. mount the partiton/virtual disk with the option
strictatime to force the Linux kernel to
update the access times

4. use find to query for all accessed files and save
the list

5. use rsync to collect all required files in another
directory structure and move them e.g. to
another stage
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Logging
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Application specific logging
Logs are directly written to a database or log collector
(Logstash, FluentD,... - more on that later)
Requires probably complex configuration and debugging
until logging is working
Has to be done for all components/services
Requires probably custom adapters for a specific logging
framework if no one else used the combination of logging
framework and log storage before
No matter how many logging protocols are supported the
one needed by your customer is always missing
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Docker logging drivers
Logging to STDOUT and letting the Docker daemon redirect
the logs is the preferred way of handling logs within Docker
Default Docker distribution bundles already a lof of 

, e.g.
Syslog
GELF
FluentD
AWS Logs

Delegates collecting to infrastructure whereas domain
specific tasks like what to log is still a task for every
developer

logging
drivers
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https://docs.docker.com/config/containers/logging/configure/#supported-logging-drivers


Configure logging driver

/etc/docker/daemon.json

{
  "log�driver": "json�file",
  "log�opts": {
    "max�size": "10m"
  }
}
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Healthchecks & monitoring
It is possible to declare healthchecks already in Dockerfiles
It is also possible to declare healthchecks in a Docker-
Compose configuration
Since version 3 of Docker-Compose healthchecks are not
considered in depends_on cases!
Cluster systems like Kubernetes are also heavily relying on
healthchecks
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Dockerfile sample
FROM golang:1.7.3
WORKDIR /go/src/github.com/alexellis/href�counter/
RUN go get �d �v golang.org/x/net/html
COPY app.go .
RUN CGO_ENABLED=0 \
    GOOS=linux \
    go build �a �installsuffix cgo �o app .
HEALTHCHECK \
    ��interval=5s \
    ��timeout=3s \
    CMD curl �f http:��localhost:5000 �� exit 1
CMD ["./app"]
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Docker-Compose sample
version: '2.1'
 
services:
  postgres:
    image: "postgres"
    environment:
    - POSTGRES_PASSWORD=dbpassword
    ports:
    - "5432�5432"
    healthcheck:
      test: ["CMD-SHELL", "psql -U dbuser �d db1 �c 'SELECT 1'"]
      interval: 10s
      timeout: 5s
      retries: 20
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Kubernetes sample
apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness
  name: liveness�exec
spec:
  containers:
  - name: liveness
    image: k8s.gcr.io/busybox
    args:
    - /bin/sh
    - �c
    - touch /tmp/healthy; sleep 30; rm �rf /tmp/healthy; sleep 60
    livenessProbe:

exec:
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Docker-Compose tricks
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Scaling
It's possible to create a Docker-Compose based
application and scale it with Docker-Compose.

Given the following docker-compose.yml:
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version: '3'
 
services:
  database:
    image: postgres:alpine
    environment:
      - POSTGRES_PASSWORD=W@c[3~DV>~�]4%+5
  icndb:
    image: baez90/jericho�victim:latest
    depends_on:
      - database
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This way it's possible to validate if an application can be
scaled correctly.
Caveat is that a scaled service cannot publish the same port
multiple times. You'd need a load balancer configured by the
Docker socket to access the scaled service from outside the
host.

# start the stack
docker�compose up �d
 
# scale the icndb
docker�compose scale icndb=3
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Networks
To isolate containers/services of your Docker-

Compose stack you can declare custom networks:
version: '3.6'
services:
  svc1�
    image: ���
    networks:
    - net1
  svc2�
    image: ���
    networks:
    - net2
 
networks:
  net1� {}
  net2� {}
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Linking of containers
To enable cross-container calls on simple

hostnames Docker-Compose offers the so called
links option to set the hostname under which a

dependent service will be available. You can define
links like shown in the following slide.
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version: '3.6'
services:
  svc1�
    image: ���
    networks:
    - net1
  svc2�
    image: ���
    networks:
    - net2
    links:
    - svc1�svc1
 
networks:
  net1� {}
net2� {}
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