
Microservices
Container - Advanced

Navigate : Space / Arrow Keys | - Menu | - Fullscreen | - Overview | - Blackout | - Speaker | - HelpM F O B S ?

1 / 29

Content
Creating better, smaller Docker images
Logging
Health checks and monitoring

Microservices 2018

2 / 29

Multi-stage builds

Microservices 2018

3 / 29

Microservices 2018

4 / 29

Some facts...
Introduced with Docker 17.05
Use multiple pre-built build environments (e.g. Node.js +
Golang)
Create smaller images containing only binaries and required
assets

Microservices 2018

5 / 29

Sample
FROM golang:1.7.3
WORKDIR /go/src/github.com/alexellis/href�counter/
RUN go get �d �v golang.org/x/net/html
COPY app.go .
RUN CGO_ENABLED=0 GOOS=linux go build �a �installsuffix cgo �o ap

FROM alpine:latest
RUN apk ��no�cache add ca�certificates
WORKDIR /root/
COPY ��from=0 /go/src/github.com/alexellis/href�counter/app .
CMD ["./app"]

Microservices 2018

6 / 29

Image minifying

Microservices 2018

7 / 29

Microservices 2018

8 / 29

How to minify?
Reduce number of layers (remember when new layers are
created)
Exclude development dependencies, test assets,...
Try to use as small base images as possible ()
Use multi stage builds

Alpine

Microservices 2018

9 / 29

https://hub.docker.com/_/alpine/

Uh, that's neat but I want more!
Do you really know which

files/libraries/dependencies are necessary? There's
a nice 'hack' to see which files ares used.

Microservices 2018

10 / 29

Problem

the Linux kernel does not update the access times of files
when they're read (anymore)
there are probably special user space tools to monitor file
access but requires installation,...

Microservices 2018

11 / 29

Hack

1. deploy your application to a VM
2. move the binaries to a separate partition/virtual

disk
3. mount the partiton/virtual disk with the option
strictatime to force the Linux kernel to
update the access times

4. use find to query for all accessed files and save
the list

5. use rsync to collect all required files in another
directory structure and move them e.g. to
another stage

Microservices 2018

12 / 29

Logging

Microservices 2018

13 / 29

Microservices 2018

14 / 29

Application specific logging
Logs are directly written to a database or log collector
(Logstash, FluentD,... - more on that later)
Requires probably complex configuration and debugging
until logging is working
Has to be done for all components/services
Requires probably custom adapters for a specific logging
framework if no one else used the combination of logging
framework and log storage before
No matter how many logging protocols are supported the
one needed by your customer is always missing

Microservices 2018

15 / 29

Microservices 2018

16 / 29

Docker logging drivers
Logging to STDOUT and letting the Docker daemon redirect
the logs is the preferred way of handling logs within Docker
Default Docker distribution bundles already a lof of

, e.g.
Syslog
GELF
FluentD
AWS Logs

Delegates collecting to infrastructure whereas domain
specific tasks like what to log is still a task for every
developer

logging
drivers

Microservices 2018

17 / 29

https://docs.docker.com/config/containers/logging/configure/#supported-logging-drivers

Configure logging driver

/etc/docker/daemon.json

{
 "log�driver": "json�file",
 "log�opts": {
 "max�size": "10m"
 }
}

Microservices 2018

18 / 29

Healthchecks & monitoring
It is possible to declare healthchecks already in Dockerfiles
It is also possible to declare healthchecks in a Docker-
Compose configuration
Since version 3 of Docker-Compose healthchecks are not
considered in depends_on cases!
Cluster systems like Kubernetes are also heavily relying on
healthchecks

Microservices 2018

19 / 29

Dockerfile sample
FROM golang:1.7.3
WORKDIR /go/src/github.com/alexellis/href�counter/
RUN go get �d �v golang.org/x/net/html
COPY app.go .
RUN CGO_ENABLED=0 \
 GOOS=linux \
 go build �a �installsuffix cgo �o app .
HEALTHCHECK \
 ��interval=5s \
 ��timeout=3s \
 CMD curl �f http:��localhost:5000 �� exit 1
CMD ["./app"]

Microservices 2018

20 / 29

Docker-Compose sample
version: '2.1'

services:
 postgres:
 image: "postgres"
 environment:
 - POSTGRES_PASSWORD=dbpassword
 ports:
 - "5432�5432"
 healthcheck:
 test: ["CMD-SHELL", "psql -U dbuser �d db1 �c 'SELECT 1'"]
 interval: 10s
 timeout: 5s
 retries: 20

Microservices 2018

21 / 29

Kubernetes sample
apiVersion: v1
kind: Pod
metadata:
 labels:
 test: liveness
 name: liveness�exec
spec:
 containers:
 - name: liveness
 image: k8s.gcr.io/busybox
 args:
 - /bin/sh
 - �c
 - touch /tmp/healthy; sleep 30; rm �rf /tmp/healthy; sleep 60
 livenessProbe:

exec:

Microservices 2018

22 / 29

Docker-Compose tricks

Microservices 2018

23 / 29

Scaling
It's possible to create a Docker-Compose based
application and scale it with Docker-Compose.

Given the following docker-compose.yml:

Microservices 2018

24 / 29

version: '3'

services:
 database:
 image: postgres:alpine
 environment:
 - POSTGRES_PASSWORD=W@c[3~DV>~�]4%+5
 icndb:
 image: baez90/jericho�victim:latest
 depends_on:
 - database

Microservices 2018

25 / 29

This way it's possible to validate if an application can be
scaled correctly.
Caveat is that a scaled service cannot publish the same port
multiple times. You'd need a load balancer configured by the
Docker socket to access the scaled service from outside the
host.

start the stack
docker�compose up �d

scale the icndb
docker�compose scale icndb=3

Microservices 2018

26 / 29

Networks
To isolate containers/services of your Docker-

Compose stack you can declare custom networks:
version: '3.6'
services:
 svc1�
 image: ���
 networks:
 - net1
 svc2�
 image: ���
 networks:
 - net2

networks:
 net1� {}
 net2� {}

Microservices 2018

27 / 29

Linking of containers
To enable cross-container calls on simple

hostnames Docker-Compose offers the so called
links option to set the hostname under which a

dependent service will be available. You can define
links like shown in the following slide.

Microservices 2018

28 / 29

version: '3.6'
services:
 svc1�
 image: ���
 networks:
 - net1
 svc2�
 image: ���
 networks:
 - net2
 links:
 - svc1�svc1

networks:
 net1� {}
net2� {}

Microservices 2018

29 / 29

