
Microservices
Webservices with Scala (II)

Microservices 2018 1

Content
Deep Dive into Play2

1. Database Access with Slick
2. Database Migration with Flyway
3. akka

3.1. overview
3.2. akka-http (the http server behind play)

Microservices 2018 2

Slick

Slick is a Scala library for working with relational databases. That
means it allows you to model a schema, run queries, insert data,
and update data1

— Access databases using a similiar interface like collections
(map, filter, flatMap, ...)

— Slick isn't an ORM (Object-Relational Mapping) - ORMs
attempt to map object oriented data models onto relational
database backends. By contrast, Slick provides a more
database-like set of tools such as queries, rows and columns.

1 Comparing Scala relational database access libraries

Microservices 2018 3

https://softwaremill.com/comparing-scala-relational-database-access-libraries/

Slick

— First you have to define your Schema and your Table (in our
exercise it's automatically generated for you)

— Then you can do Queries or do other tasks on your data
// schema & table
final case class Message(sender: String, content: String, id: Long = 0L)

final class MessageTable(tag: Tag) extends Table[Message](tag, "message") {
 def id = column[Long]("id", O.PrimaryKey, O.AutoInc)
 def sender = column[String]("sender")
 def content = column[String]("content")
 def * = (sender, content, id).mapTo[Message]
}

// data to insert
def freshTestData = Seq(
 Message("Dave", "Hello, HAL. Do you read me, HAL?"),
 Message("HAL", "Affirmative, Dave. I read you."),
 Message("Dave", "Open the pod bay doors, HAL."),
 Message("HAL", "I'm sorry, Dave. I'm afraid I can't do that.")
)
val insert: DBIO[Option[Int]] = messages ++= freshTestData
val result: Future[Option[Int]] = db.run(insert)

// selecting data
lazy val messages = TableQuery[MessageTable]
messages.filter(_.sender === "HAL")
// more about slick 3: https://books.underscore.io/essential-slick/essential-slick-3.pdf

Microservices 2018 4

Flyway

Flyway: Version control for your database. Robust schema
evolution across all your environments. With ease, pleasure and
plain SQL.

Very good for Continuous Database Integration:
Continuous Database Integration (CDBI) is the process of
rebuilding your database and test data any time a change is
applied to a project's version control repository (later @ DevOps)

Microservices 2018 5

https://flywaydb.org/

What is exactly Flyway?

— database migration framework for relational databases based
on Java

— build a database from scratch
— manages the database and schema
— mulitple modes for migrating

V1__Initial_Setup.sql, V2__First_Changes.sql

Microservices 2018 6

akka

akka is a toolkit for building highly concurrent, distributed and
fault tolerant applications based on the actor model which runs
on the JVM. Scale UP and OUT for free, because it's distributable
by design.

— For distribution across threads --> Actors (perhaps with
persistence and event sourcing)

— For distribution across machines --> akka clusters and akka
remote

— interact with external world --> akka http, akka gRPC and
alpakka

Microservices 2018 7

akka-http

— It is a toolkit based on akka streams and follows the reactive
streams idea HTTPServer as Flow[HttpRequest,
HttpResponse]

— It is not a web framework (look @ play2)
— It has full server and client-side HTTP stack
— It has a mulitple level API

Microservices 2018 8

akka-http implementation

— APIs in both Scala and Java
— Fully asynchronous and nonblocking
— Focused on higher level API
— lightweight & modular
— testable
def routeGetOne =
 get {
 path(IntNumber) { dummyId =>
 authenticate { u =>
 complete {
 dummyService.getOne(dummyId).map(_.asJson)
 }
 }
 }
 }
//scalatest
Get("/1") ~> routeGetOne ~> check {
 status == OK
 entity.as[Dummy] === ???
}

//out of: https://github.com/innFactory/bootstrap-akka-http

Microservices 2018 9

