
Microservices
Webservices with Scala

Microservices 2018 1

Content

1. Introduction to Scala

2. Introduction to Play Framework 2

Microservices 2018 2

First things first

— You can do all our exercises with Java, but the solution will be
handed out as Scala code

— The primary goal is not to be a scala developer
— BUT you should hear and know the concepts of Scala

Microservices 2018 3

Microservices 2018 4

What is Scalable language (Scala) and why?

— First release in 2003 after Martin Odersky decided to make a
better Java

— Scala is a JVM language like Kotlin, Clojure and JRuby etc..
— Bytecode is an instruction set of one-byte opcodes executed

by the JVM
— Statically typed
— simple lightweight syntax but not easy to to learn
— Object-oriented and functional
— Fully interoperable with Java

Microservices 2018 5

Why Scala?

public class Time { // Java
 private final int hours;
 private final int minutes;
 public Time(int hours, int minutes) {
 this.hours = hours;
 this.minutes = minutes;
 }
 public int getHours() {
 return hours;
 }
 public int getMinutes() {
 return minutes;
 }
}

case class Time(val hours: Int, val minutes: Int) // Scala

Microservices 2018 6

Immutable & Mutable Values
Welcome to the Ammonite Repl 1.2.1
(Scala 2.12.6 Java 1.8.0_181)
If you like Ammonite, please support our development at www.patreon.com/lihaoyi
@ val msg = "Hello, world!"
msg: String = "Hello, world!"

@ msg = "New value!"
cmd1.sc:1: reassignment to val
val res1 = msg = "New value!"
 ^
Compilation Failed

@ var mutableMsg = "Hello Wrld!"
mutableMsg: String = "Hello Wrld!"

@ muta
mutableMsg
@ mutableMsg = "Hello World!" ^

— An immutable value is defined with the val keyword.
— A mutable value is defined with var keyword.
Microservices 2018 7

Type Inference

@ val msg = "Microservices"
msg: String = "Microservices"

@ val msg: String = "Microservices"
msg: String = "Microservices"

@ val msg: Double = "Microservices"
cmd5.sc:1: type mismatch;
 found : String("Microservices")
 required: Double
val msg: Double = "Microservices"
 ^
Compilation Failed

— Scala Compiler can infer the type
— Provide your types for public API
Microservices 2018 8

Scala (OO)

— Classes and traits
— Singleton objects are first-class objects
— Single Inheritance, but multiple traits can be mixed in
— If a singleton object and a class or trait share the same name,

package and file, they are called companions

class World(name: String) // Can be instantiated

object World { // Creates only one single instace of a class by its Name
 val name = "Earth"
 def getNewInstance = new World(name)
} // access the string with: World.name

Microservices 2018 9

Class constructors & parameters

— Class definition is the signature
— Class body is the implementation
— Each class gets a constructor automatically
@ class MyClass
defined class MyClass

@ class MyClassWithPrimaryConstructor {
 println("init")
 }
defined class MyClassWithPrimaryConstructor

@ new MyClassWithPrimaryConstructor
init
res7: MyClassWithPrimaryConstructor = ammonite.$sess.cmd6$MyClassWithPrimaryConstructor@14b789f6

@ class Greeter(who: String){
 println(who)
 }
defined class Greeter

@ new Greeter("Tobias")
Tobias
res9: Greeter = ammonite.$sess.cmd8$Greeter@6ba060f3

Microservices 2018 10

Fields & Methods

— Methods are class members providing operations
— Fields are class members keeping state
— Use var to define a mutable field
— Scala lets you pick the right tool for the job
— Best practice: Prefer immutable objects, var only for specific

use cases
@ class Sample(name: String){
 println(s"Init with $name")
 def method(x : Int) = x * x
 var field = 1
 }
defined class Sample

Microservices 2018 11

Infix & Postfix Operators

— Operators are methods used in operator notation
— Operator notation means omitting dots and parentheses
— Methods with one parameter can be used in infix notation
— Methods without parameters can be used in postfix notation
— In general, avoid using postfix notation
@ class Rational(n: Int, d: Int) {
 require(d != 0)
 val numer: Int = n
 val denom: Int = d
 override def toString = numer + (if (denom == 1) "" else ("/"+denom))
 // default methods
 def +(that: Rational): Rational = new Rational(numer * that.denom + that.numer * denom, denom * that.denom)
 }
defined class Rational

@ val r = new Rational(2,3)
r: Rational = 2/3

@ val f = new Rational(3,4)
f: Rational = 3/4

@ r + f
res16: Rational = 17/12

Microservices 2018 12

Arguments

— Default arguments let you omit trailing arguments
— Leading arguments can be omitted by giving trailing

arguments by name
— You can always give all arguments by name and you can also

mix
@ def contact(name: String = "", firstname: String = "", mail: String = "unknown") = s"$firstname $name's mail is $mail"
defined function contact

@ contact("Jonas", "Tobias", "tobias.jonas@fh-rosenheim.de")
res18: String = "Tobias Jonas's mail is tobias.jonas@fh-rosenheim.de"

@ contact(name = "Jonas", mail = "tobias.jonas@fh-rosenheim.de")
res19: String = " Jonas's mail is tobias.jonas@fh-rosenheim.de"

Microservices 2018 13

Packages & Imports

— Packages organize non trivial code bases
— Use import if you dont want to use the fqn (= fully qualified

name)
— Use the underscore* _* to import all members of a package
— Rename imported objects with =>
— Import multiple Classes with { .. }

package de.innfactory.microservices.training
import de.innfactory.ms.Object //import Object
import de.innfactory.ms.commons._ //import all
import de.innfactory.ms2.{ Object => Obj }
Microservices 2018 14

Case Classes
@ case class Person(name: String, firstname: String)
defined class Person

@ Person("Kurfer", "Peter")
res21: Person = Person("Kurfer", "Peter") //Person.apply("Kurfer", "Peter")

// Internally Scala generates a Object with an apply method
// Works for every Object --> Syntactic Sugar

— Create new instances without new
— Compiler creates nice toString, equals and hashCode

implementations
— Class parameters are promoted to immutable fields

automatically
— copy method is automatically implemented
— Use case classes in pattern matching (covered a little later)
Microservices 2018 15

Collections

— Scala collection library is very comprehensive
— Each collection has a companion object with an apply method
— Abstract, Mutable, Immutable Version available
— Type parameters are declared in square brackets
— Type arguments can be inferred or given explicitly
@ Vector(1,2,3)
res23: Vector[Int] = Vector(1, 2, 3)

@ Set(0, 1, "a")
res24: Set[Any] = Set(1, 2, "a")

@ Tuple2("Hello", "World") // same like ("Hello", "World") or "Hello" -> "World"
res25: (String, String) = ("Hello", "World")

@ Map(1 -> "Hello", 2 -> "World", 3 -> "!")
res28: Map[Int, String] = Map(1 -> "Hello", 2 -> "World", 3 -> "!")

Microservices 2018 16

Inheritance

— Scala supports inheritance
— Each class, except for Any, has exactly one superclass
— Sealed classes can only be extended within the same source

file
— Use final to prevent a class from being extended
— Use super to access the superclass members
— Use lazy keyword to defer initialization until first usage
— Abstract classes cannot be instantiated

Microservices 2018 17

Traits

— JVM has only single class inheritance
— Scala introduces traits to overcome this limitation

— Inherit from exactly one superclass
— Mix-in multiple traits

— Use with to mix-in a trait
abstract class Animal

trait Flyer {
 def fly: String = "I'm flying!"
}

trait Swimmer {
 def swim: String = "I'm swimming!"
}

class Bird extends Animal with Flyer
class Fish extends Animal with Swimmer
class Duck extends Bird with Swimmer

Microservices 2018 18

Type Hierarchy

Microservices 2018 19

Pattern Matching

— Expressions are matched against a pattern
— case declares a match pattern
— pattern is one of various pattern types
— result is an arbitrary expression
— If pattern matches, result will be evaluated and returned

— Difference to the switch case statement of C or Java
@ def isAfternoon(any: Any) = any match {
 case Time(h, m) if h >=12 => s"Yes, it is $h:$m in the afternoon"
 case Time(h, m) => s"No, it is $h:$m in the morning"
 case _ => s"$any is no time!"
 }
defined function isAfternoon

@ isAfternoon(Time(13, 30))
res42: String = "Yes, it is 13:30 in the afternoon"

@ isAfternoon(Time(5, 30))
res43: String = "No, it is 5:30 in the morning"

Microservices 2018 20

Optional Values

— Optional is a better alternative to null in Java
— ADT with Some value or None as singleton object
— Handle it with Pattern Matching or higher ordered functions
— getOrElse extracts the wrapped value or returns a default
val sSome = Some("String")
val sNone = None
sSome.getOrElse("no String found")
sNone.getOrElse("no String found")

sSome match {
 case Some(value) => s"Value $value found"
 case _ => "No value found"
}

Microservices 2018 21

More concepts and knowledge we haven't covered

The following concepts are importand for a real application, but
you don't need them for our Microservice samples.

Application and Main Methods, Qualified Access Modifiers,
Testing and Mocking Frameworks, Collection Deep Dive,
Functional Programming Basics, Higher order functions, Function
literals, Function types, Important higher order functions, for
Expressions and Generators, Filters, String Interpolation,
Handling Failures with Try or Exceptions, Meta Programming, ...

Microservices 2018 22

Exercise 1
Your first steps with Scala

Microservices 2018 23

Microservices 2018 24

Introduction to Play Framework1

— Based on a lightweight, stateless, web-friendly, non blicking
architecture

— Built on Akka, provides predictable and minimal resources
consumption (CPU, memory, threads) for highly-scalable
apllications

— You can easily call other backend services like a event sourced
akka endpoint

— Lots of built in features for fast development
— Follows MVC architecture (we'll use it as plain REST Endpoints
1 Most sources are from the official documentation

Microservices 2018 25

https://www.playframework.com/documentation/2.6.x/ScalaHome

Features of Play Framework

— Strong focus on productivit. Fast
turnaround

— Hot reloading: Fix the bug and hit
reload will recompile the change

— Type safe all the way, even templates
and route files

— Use Scala or Java
— Easy to learn
— Evented Non-blocking I/O server (like

node.js, akka, netty)
— Play Provides full stack

— Websocket support
— Template Engine for Views
— Testing engine

Microservices 2018 26

Evented Server (Reactor pattern)

Microservices 2018 27

The Play application layout

app → Application sources
 └ assets → Compiled asset sources
 └ stylesheets → Typically LESS CSS sources
 └ javascripts → Typically CoffeeScript sources
 └ controllers → Application controllers
 └ models → Application business layer
 └ views → Templates
build.sbt → Application build script
conf → Configurations files and other non-compiled resources (on classpath)
 └ application.conf → Main configuration file
 └ routes → Routes definition
dist → Arbitrary files to be included in your projects distribution
public → Public assets
 └ stylesheets → CSS files
 └ javascripts → Javascript files
 └ images → Image files
project → sbt configuration files
 └ build.properties → Marker for sbt project
 └ plugins.sbt → sbt plugins including the declaration for Play itself
lib → Unmanaged libraries dependencies
logs → Logs folder
 └ application.log → Default log file
target → Generated stuff
 └ resolution-cache → Info about dependencies
 └ scala-2.11
 └ api → Generated API docs
 └ classes → Compiled class files
 └ routes → Sources generated from routes
 └ twirl → Sources generated from templates
 └ universal → Application packaging
 └ web → Compiled web assets
test → source folder for unit or functional tests

Microservices 2018 28

Common Commands

— sbt run starts your server in development mode on port 9000
- In dev mode, Play shows error messages in your browser

— sbt compile just compile your sources
— sbt test run your written tests
— sbt testOnly de.innfactory.play.MyClass run just one

test
— You can run sbt shell to get an interactive sbt mode
— there is a help
— sbt dist create your release

Microservices 2018 29

Basic Overview

1. The browser requests the root / URI
from the HTTP server using the GET
method.

2. The Play internal HTTP Server
receives the request.

3. Play resolves the request using the
routes file, which maps URIs to
controller action methods.

4. The action method renders the index
page, using Twirl templates.

5. The HTTP server returns the response
as an HTML page.

Microservices 2018 30

Play Terminolgy

— Action: A Action is basically a function that handles a request
and generates a result to be sent to the client.

— Controllers: A controller in Play is nothing more than an object
that generates Action values. Controllers are typically defined
as classes to take advantage of Dependency Injection.

— Modules Play uses public modules to augment built-in
functionality

def echo = Action { request =>
 Ok("Got request [" + request + "]")
}
Microservices 2018 31

HTTP Routing

— The built-in HTTP router is the component in charge of
translating each incoming HTTP request to an Action.

— An HTTP request is seen as an event by the MVC framework.
This events contains two major pieces of information:
— The request path (e.g. /devices/1, /actions?lastHour=true)
— The HTTP method (e.g. GET, POST, PUT)

— URI Pattern
— Router Features also regex validation in route file
 //Static Path
GET /greetings controllers.Greeter.list()
//Dynamic Parts
GET /greetings/:name controllers.Greeter.greet(name: String)

Microservices 2018 32

Configuration

— Play uses the Typesafe config library, but Play also provides a
nice Scala wrapper called Configuration with more advaed
Scala features

— You can do a lot of things just with the right config (Very Good
for your CI Pipeline)

— The Router mentioned is also configured by a config file
Override default error handler
play.http.errorHandler = "common.errorHandling.ErrorHandler"
play.modules.enabled += "play.modules.swagger.SwaggerModule"
api.version="alpha"
api.version=${?API_VERSION}
swagger.version=2.0
swagger.api.info.title="Play2-Bootstrap"
swagger.api.info.description="Play2-Bootstrap"

Microservices 2018 33

Exercise 2
Your first steps with Play Framework2

2 https://www.playframework.com/documentation/2.6.x/ScalaHome
https://www.playframework.com/documentation/2.6.x/JavaHome

Microservices 2018 34

